巴西最高法院每学期收到数万案件。法院员工花费数千个小时来执行这些案件的初步分析和分类 - 这需要努力从案件管理工作流的后部,更复杂的阶段进行努力。在本文中,我们探讨了来自巴西最高法院的文件多模式分类。我们在6,510起诉讼(339,478页)的新型多模式数据集上训练和评估我们的方法,并用手动注释将每个页面分配给六个类之一。每个诉讼都是页面的有序序列,它们既可以作为图像存储,又是通过光学特征识别提取的相应文本。我们首先训练两个单峰分类器:图像上对Imagenet进行了预先训练的重新编织,并且图像上进行了微调,并且具有多个内核尺寸过滤器的卷积网络在文档文本上从SCRATCH进行了训练。我们将它们用作视觉和文本特征的提取器,然后通过我们提出的融合模块组合。我们的融合模块可以通过使用学习的嵌入来处理缺失的文本或视觉输入,以获取缺少数据。此外,我们尝试使用双向长期记忆(BILSTM)网络和线性链条件随机字段进行实验,以模拟页面的顺序性质。多模式方法的表现都优于文本分类器和视觉分类器,尤其是在利用页面的顺序性质时。
translated by 谷歌翻译
语义场景完成(SSC)是一个具有挑战性的计算机视觉任务,具有许多实际应用,从机器人到辅助计算。其目标是在场景的视野中推断3D几何图形和体素的语义标记,包括遮挡区域。在这项工作中,我们呈现出来,一种新型轻质多模式3D深CNN,其与来自BiMoDal 2D分段网络的语义前沿的RGB-D图像的深度分量无缝地熔化结构数据。这一领域的一个至关重要的困难是缺乏完全标记的现实世界3D数据集,足以训练当前的数据饥饿的深3d CNN。在2D计算机愿景任务中,已提出许多数据增强策略来改善CNN的泛化能力。但是,这些方法不能直接应用于RGB-D输入和SSC解决方案的输出量。在本文中,我们介绍了可以应用于多模式SSC网络的3D数据增强策略的使用。我们通过全面和可重复的消融研究验证我们的贡献。我们的解决方案始终如一地超越了以前的作品,具有类似的复杂程度。
translated by 谷歌翻译
基于连续的潜在空间(例如变异自动编码器)的概率模型可以理解为无数混合模型,其中组件连续取决于潜在代码。它们具有用于生成和概率建模的表达性工具,但与可牵引的概率推断不符,即计算代表概率分布的边际和条件。同时,可以将概率模型(例如概率电路(PC))理解为层次离散混合模型,从而使它们可以执行精确的推断,但是与连续的潜在空间模型相比,它们通常显示出低于标准的性能。在本文中,我们研究了一种混合方法,即具有较小潜在尺寸的可拖动模型的连续混合物。尽管这些模型在分析上是棘手的,但基于一组有限的集成点,它们非常适合数值集成方案。有足够数量的集成点,近似值变得精确。此外,使用一组有限的集成点,可以将近似方法编译成PC中,以“在近似模型中的精确推断”执行。在实验中,我们表明这种简单的方案被证明非常有效,因为PC在许多标准密度估计基准上以这种方式为可拖动模型设定了新的最新模型。
translated by 谷歌翻译
机器学习中的许多新的发展都与基于梯度的优化方法相连。最近,已经使用变分透视研究了这些方法。这已经开辟了使用几何集成引入变分和辛方法的可能性。特别是,在本文中,我们引入了变分集成商,使我们能够导出不同的优化方法。使用汉密尔顿和拉格朗日 - 德尔尔堡的原则,我们在一对一的对应中获得了两个各自的优化方法的一个家庭,即概括Polyak的厚球和众所周知的Nesterov加速梯度方法,其中第二个是模仿行为的第二个对应首先减少经典动量方法的振荡。然而,由于考虑的系统是明确时间依赖的,因此自主系统的杂交的保存仅在这里发生在纤维上。几个实验举例说明结果。
translated by 谷歌翻译
Advances in computer vision and machine learning techniques have led to significant development in 2D and 3D human pose estimation from RGB cameras, LiDAR, and radars. However, human pose estimation from images is adversely affected by occlusion and lighting, which are common in many scenarios of interest. Radar and LiDAR technologies, on the other hand, need specialized hardware that is expensive and power-intensive. Furthermore, placing these sensors in non-public areas raises significant privacy concerns. To address these limitations, recent research has explored the use of WiFi antennas (1D sensors) for body segmentation and key-point body detection. This paper further expands on the use of the WiFi signal in combination with deep learning architectures, commonly used in computer vision, to estimate dense human pose correspondence. We developed a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions. The results of the study reveal that our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches, by utilizing WiFi signals as the only input. This paves the way for low-cost, broadly accessible, and privacy-preserving algorithms for human sensing.
translated by 谷歌翻译
Due to the environmental impacts caused by the construction industry, repurposing existing buildings and making them more energy-efficient has become a high-priority issue. However, a legitimate concern of land developers is associated with the buildings' state of conservation. For that reason, infrared thermography has been used as a powerful tool to characterize these buildings' state of conservation by detecting pathologies, such as cracks and humidity. Thermal cameras detect the radiation emitted by any material and translate it into temperature-color-coded images. Abnormal temperature changes may indicate the presence of pathologies, however, reading thermal images might not be quite simple. This research project aims to combine infrared thermography and machine learning (ML) to help stakeholders determine the viability of reusing existing buildings by identifying their pathologies and defects more efficiently and accurately. In this particular phase of this research project, we've used an image classification machine learning model of Convolutional Neural Networks (DCNN) to differentiate three levels of cracks in one particular building. The model's accuracy was compared between the MSX and thermal images acquired from two distinct thermal cameras and fused images (formed through multisource information) to test the influence of the input data and network on the detection results.
translated by 谷歌翻译
The advances in Artificial Intelligence are creating new opportunities to improve lives of people around the world, from business to healthcare, from lifestyle to education. For example, some systems profile the users using their demographic and behavioral characteristics to make certain domain-specific predictions. Often, such predictions impact the life of the user directly or indirectly (e.g., loan disbursement, determining insurance coverage, shortlisting applications, etc.). As a result, the concerns over such AI-enabled systems are also increasing. To address these concerns, such systems are mandated to be responsible i.e., transparent, fair, and explainable to developers and end-users. In this paper, we present ComplAI, a unique framework to enable, observe, analyze and quantify explainability, robustness, performance, fairness, and model behavior in drift scenarios, and to provide a single Trust Factor that evaluates different supervised Machine Learning models not just from their ability to make correct predictions but from overall responsibility perspective. The framework helps users to (a) connect their models and enable explanations, (b) assess and visualize different aspects of the model, such as robustness, drift susceptibility, and fairness, and (c) compare different models (from different model families or obtained through different hyperparameter settings) from an overall perspective thereby facilitating actionable recourse for improvement of the models. It is model agnostic and works with different supervised machine learning scenarios (i.e., Binary Classification, Multi-class Classification, and Regression) and frameworks. It can be seamlessly integrated with any ML life-cycle framework. Thus, this already deployed framework aims to unify critical aspects of Responsible AI systems for regulating the development process of such real systems.
translated by 谷歌翻译
Model calibration, which is concerned with how frequently the model predicts correctly, not only plays a vital part in statistical model design, but also has substantial practical applications, such as optimal decision-making in the real world. However, it has been discovered that modern deep neural networks are generally poorly calibrated due to the overestimation (or underestimation) of predictive confidence, which is closely related to overfitting. In this paper, we propose Annealing Double-Head, a simple-to-implement but highly effective architecture for calibrating the DNN during training. To be precise, we construct an additional calibration head-a shallow neural network that typically has one latent layer-on top of the last latent layer in the normal model to map the logits to the aligned confidence. Furthermore, a simple Annealing technique that dynamically scales the logits by calibration head in training procedure is developed to improve its performance. Under both the in-distribution and distributional shift circumstances, we exhaustively evaluate our Annealing Double-Head architecture on multiple pairs of contemporary DNN architectures and vision and speech datasets. We demonstrate that our method achieves state-of-the-art model calibration performance without post-processing while simultaneously providing comparable predictive accuracy in comparison to other recently proposed calibration methods on a range of learning tasks.
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
Over the past decade, neural networks have been successful at making predictions from biological sequences, especially in the context of regulatory genomics. As in other fields of deep learning, tools have been devised to extract features such as sequence motifs that can explain the predictions made by a trained network. Here we intend to go beyond explainable machine learning and introduce SEISM, a selective inference procedure to test the association between these extracted features and the predicted phenotype. In particular, we discuss how training a one-layer convolutional network is formally equivalent to selecting motifs maximizing some association score. We adapt existing sampling-based selective inference procedures by quantizing this selection over an infinite set to a large but finite grid. Finally, we show that sampling under a specific choice of parameters is sufficient to characterize the composite null hypothesis typically used for selective inference-a result that goes well beyond our particular framework. We illustrate the behavior of our method in terms of calibration, power and speed and discuss its power/speed trade-off with a simpler data-split strategy. SEISM paves the way to an easier analysis of neural networks used in regulatory genomics, and to more powerful methods for genome wide association studies (GWAS).
translated by 谷歌翻译