我们提出了一个数据收集和注释管道,该数据从越南放射学报告中提取信息,以提供胸部X射线(CXR)图像的准确标签。这可以通过注释与其特有诊断类别的数据相匹配,这些数据可能因国家而异。为了评估所提出的标签技术的功效,我们构建了一个包含9,752项研究的CXR数据集,并使用该数据集的子集评估了我们的管道。以F1得分为至少0.9923,评估表明,我们的标签工具在所有类别中都精确而始终如一。构建数据集后,我们训练深度学习模型,以利用从大型公共CXR数据集传输的知识。我们采用各种损失功能来克服不平衡的多标签数据集的诅咒,并使用各种模型体系结构进行实验,以选择提供最佳性能的诅咒。我们的最佳模型(CHEXPERT-FRECTER EDIDENENET-B2)的F1得分为0.6989(95%CI 0.6740,0.7240),AUC为0.7912,敏感性为0.7064,特异性为0.8760,普遍诊断为0.8760。最后,我们证明了我们的粗分类(基于五个特定的异常位置)在基准CHEXPERT数据集上获得了可比的结果(十二个病理),以进行一般异常检测,同时在所有类别的平均表现方面提供更好的性能。
translated by 谷歌翻译
如今,越来越多的人被诊断出患有心血管疾病(CVD),这是全球死亡的主要原因。鉴定这些心脏问题的金标准是通过心电图(ECG)。标准的12铅ECG广泛用于临床实践和当前的大多数研究。但是,使用较少的铅可以使ECG更加普遍,因为它可以与便携式或可穿戴设备集成。本文介绍了两种新型技术,以提高当前深度学习系统的3铅ECG分类的性能,从而与使用标准12铅ECG训练的模型相提并论。具体而言,我们提出了一种以心跳回归数量的形式的多任务学习方案,以及将患者人口统计数据整合到系统中的有效机制。随着这两个进步,我们在两个大规模的ECG数据集(即Chapman和CPSC-2018)上以F1分数为0.9796和0.8140的分类性能,这些数据分别超过了当前最新的ECG分类方法,该方法超过了当前的ECG分类方法。甚至那些接受了12条铅数据的培训。为了鼓励进一步开发,我们的源代码可在https://github.com/lhkhiem28/lightx3ecg上公开获得。
translated by 谷歌翻译
表示技术的快速发展和大规模医学成像数据的可用性必须在3D医学图像分析中快速增加机器学习的使用。特别是,深度卷积神经网络(D-CNN)是关键参与者,并被医学成像界采用,以协助临床医生和医学专家进行疾病诊断。然而,培训深层神经网络,例如在高分辨率3D体积的计算机断层扫描(CT)扫描中进行诊断任务的D-CNN带来了强大的计算挑战。这提出了开发基于深度学习的方法,这些方法在2D图像中具有强大的学习表示形式,而是3D扫描。在本文中,我们提出了一种新的策略,以根据沿轴的相邻切片的描述来训练CT扫描上的\ emph {slice level}分类器。特别是,每一个都是通过卷积神经网络(CNN)提取的。该方法适用于具有每片标签的CT数据集,例如RSNA颅内出血(ICH)数据集,该数据集旨在预测ICH的存在并将其分类为5个不同的子类型。我们在RSNA ICH挑战的最佳4 \%最佳解决方案中获得了单个模型,其中允许模型集成。实验还表明,所提出的方法显着优于CQ500上的基线模型。所提出的方法是一般的,可以应用于其他3D医学诊断任务,例如MRI成像。为了鼓励该领域的新进步,我们将在接受论文后制定我们的代码和预培训模型。
translated by 谷歌翻译
高级深度学习(DL)算法可以预测患者基于乳房成像报告和数据系统(BI-RAD)和密度标准的患者发育乳腺癌的风险。最近的研究表明,多视图分析的结合改善了整体乳房考试分类。在本文中,我们提出了一种新的多视图DL方法,用于乳房X线照片的Bi-RAD和密度评估。所提出的方法首先部署深度卷积网络,用于分别对每个视图进行特征提取。然后将提取的特征堆叠并馈入光梯度升压机(LightGBM)分类器中以预测Bi-RAD和密度分数。我们对内部乳房数据集和公共数据集数字数据库进行广泛的实验,用于筛选乳房X线摄影(DDSM)。实验结果表明,所提出的方法在两个基准数据集中突出了巨大的边距(内部数据集5%,DDSM数据集10%)优于两个基准分类方法。这些结果突出了组合多视图信息来改善乳腺癌风险预测性能的重要作用。
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Recent development in the field of explainable artificial intelligence (XAI) has helped improve trust in Machine-Learning-as-a-Service (MLaaS) systems, in which an explanation is provided together with the model prediction in response to each query. However, XAI also opens a door for adversaries to gain insights into the black-box models in MLaaS, thereby making the models more vulnerable to several attacks. For example, feature-based explanations (e.g., SHAP) could expose the top important features that a black-box model focuses on. Such disclosure has been exploited to craft effective backdoor triggers against malware classifiers. To address this trade-off, we introduce a new concept of achieving local differential privacy (LDP) in the explanations, and from that we establish a defense, called XRand, against such attacks. We show that our mechanism restricts the information that the adversary can learn about the top important features, while maintaining the faithfulness of the explanations.
translated by 谷歌翻译
Manually analyzing spermatozoa is a tremendous task for biologists due to the many fast-moving spermatozoa, causing inconsistencies in the quality of the assessments. Therefore, computer-assisted sperm analysis (CASA) has become a popular solution. Despite this, more data is needed to train supervised machine learning approaches in order to improve accuracy and reliability. In this regard, we provide a dataset called VISEM-Tracking with 20 video recordings of 30s of spermatozoa with manually annotated bounding-box coordinates and a set of sperm characteristics analyzed by experts in the domain. VISEM-Tracking is an extension of the previously published VISEM dataset. In addition to the annotated data, we provide unlabeled video clips for easy-to-use access and analysis of the data. As part of this paper, we present baseline sperm detection performances using the YOLOv5 deep learning model trained on the VISEM-Tracking dataset. As a result, the dataset can be used to train complex deep-learning models to analyze spermatozoa. The dataset is publicly available at https://zenodo.org/record/7293726.
translated by 谷歌翻译
Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the lack of labeled training samples by learning feature representations from unlabeled data. However, most current SSL techniques in the medical field have been designed for either 2D images or 3D volumes. In practice, this restricts the capability to fully leverage unlabeled data from numerous sources, which may include both 2D and 3D data. Additionally, the use of these pre-trained networks is constrained to downstream tasks with compatible data dimensions. In this paper, we propose a novel framework for unsupervised joint learning on 2D and 3D data modalities. Given a set of 2D images or 2D slices extracted from 3D volumes, we construct an SSL task based on a 2D contrastive clustering problem for distinct classes. The 3D volumes are exploited by computing vectored embedding at each slice and then assembling a holistic feature through deformable self-attention mechanisms in Transformer, allowing incorporating long-range dependencies between slices inside 3D volumes. These holistic features are further utilized to define a novel 3D clustering agreement-based SSL task and masking embedding prediction inspired by pre-trained language models. Experiments on downstream tasks, such as 3D brain segmentation, lung nodule detection, 3D heart structures segmentation, and abnormal chest X-ray detection, demonstrate the effectiveness of our joint 2D and 3D SSL approach. We improve plain 2D Deep-ClusterV2 and SwAV by a significant margin and also surpass various modern 2D and 3D SSL approaches.
translated by 谷歌翻译