互动和非交互式模型是基于向量的交叉信息检索(V-CLIR)中的两个De-Facto标准框架,其分别以同步和异步方式嵌入查询和文档。从检索准确性和计算效率的角度来看,每个型号都有自己的优越性和缺点。在本文中,我们提出了一种新颖的框架来利用这两个范式的优势。具体地,我们介绍了半交互式机制,它在非交互式架构上构建了我们的模型,但将每个文档与其相关的多语言查询一起编码。因此,可以更好地学习交互式模型的交叉特征。此外,我们通过重用其单词嵌入和采用知识蒸馏来进一步将知识从训练有素的互动模型转移到我们的。我们的模型是从多语言预先训练的语言模型M-BERT初始化的,并在从维基百科和从现实世界搜索引擎收集的内部数据集进行评估。广泛的分析表明,我们的方法在保持计算效率的同时显着提高了检索准确性。
translated by 谷歌翻译
在本文中,我们提出了FXAM(快速可解释的添加剂模型),统一和快速可解释模型的预测分析。 FXAM将GAM的(广义添加剂模型)扩展到具有统一添加剂模型的模型,用于数值,分类和时间特征。 FXAM进行一种新颖的培训程序,称为三级迭代(TSI)。三个阶段分别对应于学习数值,分类和时间特征。通过固定其他阶段的参数,每个阶段都学习本地最佳。我们设计联合学习过度学习,占时间特征的部分学习,以实现高精度和培训效率。我们证明了TSI保证融合到全球最优。我们进一步提出了一套优化技术来加速FXAM的培训算法,以满足交互式分析的需求。评估验证FXAM在训练速度和建模分类和时间特征方面显着优于现有的游戏。
translated by 谷歌翻译
尽管在一般强化学习(RL)中建立了良好的建立,但很少在受约束的RL(CRL)中探索基于价值的方法,因为它们无法找到可以在多个动作中随机进行随机的策略的能力。为了将基于价值的方法应用于CRL,最新的游戏理论方法采用了混合策略,该策略将一组精心生成的策略之间随机进行随机,以收敛到所需的约束可满足的策略。但是,这些方法需要存储大量的政策,这不是政策效率的,并且可能会在约束深度RL中产生过高的记忆成本。为了解决这个问题,我们提出了一种替代方法。我们的方法首先将CRL重新制定为等效距离优化问题。使用专门设计的线性优化Oracle,我们得出了一个元叠层,该元值使用任何现成的RL算法和任何条件梯度(CG)型算法作为子例程来求解它。然后,我们提出了CG型算法的新变体,该变体概括了最小范数(MNP)方法。所提出的方法与现有游戏理论方法的收敛速率相匹配,并实现了最差的最佳政策效率。导航任务上的实验表明,我们的方法将记忆成本降低了一个数量级,同时达到了更好的性能,并证明了其有效性和效率。
translated by 谷歌翻译
Recent advances in neural radiance fields have enabled the high-fidelity 3D reconstruction of complex scenes for novel view synthesis. However, it remains underexplored how the appearance of such representations can be efficiently edited while maintaining photorealism. In this work, we present PaletteNeRF, a novel method for photorealistic appearance editing of neural radiance fields (NeRF) based on 3D color decomposition. Our method decomposes the appearance of each 3D point into a linear combination of palette-based bases (i.e., 3D segmentations defined by a group of NeRF-type functions) that are shared across the scene. While our palette-based bases are view-independent, we also predict a view-dependent function to capture the color residual (e.g., specular shading). During training, we jointly optimize the basis functions and the color palettes, and we also introduce novel regularizers to encourage the spatial coherence of the decomposition. Our method allows users to efficiently edit the appearance of the 3D scene by modifying the color palettes. We also extend our framework with compressed semantic features for semantic-aware appearance editing. We demonstrate that our technique is superior to baseline methods both quantitatively and qualitatively for appearance editing of complex real-world scenes.
translated by 谷歌翻译
Explaining the black-box predictions of NLP models naturally and accurately is an important open problem in natural language generation. These free-text explanations are expected to contain sufficient and carefully-selected evidence to form supportive arguments for predictions. Due to the superior generative capacity of large pretrained language models, recent work built on prompt engineering enables explanation generation without specific training. However, explanation generated through single-pass prompting often lacks sufficiency and conciseness. To address this problem, we develop an information bottleneck method EIB to produce refined explanations that are sufficient and concise. Our approach regenerates the free-text explanation by polishing the single-pass output from the pretrained language model but retaining the information that supports the contents being explained. Experiments on two out-of-domain tasks verify the effectiveness of EIB through automatic evaluation and thoroughly-conducted human evaluation.
translated by 谷歌翻译
Coverage path planning is a major application for mobile robots, which requires robots to move along a planned path to cover the entire map. For large-scale tasks, coverage path planning benefits greatly from multiple robots. In this paper, we describe Turn-minimizing Multirobot Spanning Tree Coverage Star(TMSTC*), an improved multirobot coverage path planning (mCPP) algorithm based on the MSTC*. Our algorithm partitions the map into minimum bricks as tree's branches and thereby transforms the problem into finding the maximum independent set of bipartite graph. We then connect bricks with greedy strategy to form a tree, aiming to reduce the number of turns of corresponding circumnavigating coverage path. Our experimental results show that our approach enables multiple robots to make fewer turns and thus complete terrain coverage tasks faster than other popular algorithms.
translated by 谷歌翻译
In the scope of "AI for Science", solving inverse problems is a longstanding challenge in materials and drug discovery, where the goal is to determine the hidden structures given a set of desirable properties. Deep generative models are recently proposed to solve inverse problems, but these currently use expensive forward operators and struggle in precisely localizing the exact solutions and fully exploring the parameter spaces without missing solutions. In this work, we propose a novel approach (called iPage) to accelerate the inverse learning process by leveraging probabilistic inference from deep invertible models and deterministic optimization via fast gradient descent. Given a target property, the learned invertible model provides a posterior over the parameter space; we identify these posterior samples as an intelligent prior initialization which enables us to narrow down the search space. We then perform gradient descent to calibrate the inverse solutions within a local region. Meanwhile, a space-filling sampling is imposed on the latent space to better explore and capture all possible solutions. We evaluate our approach on three benchmark tasks and two created datasets with real-world applications from quantum chemistry and additive manufacturing, and find our method achieves superior performance compared to several state-of-the-art baseline methods. The iPage code is available at https://github.com/jxzhangjhu/MatDesINNe.
translated by 谷歌翻译
Outcome prediction is crucial for head and neck cancer patients as it can provide prognostic information for early treatment planning. Radiomics methods have been widely used for outcome prediction from medical images. However, these methods are limited by their reliance on intractable manual segmentation of tumor regions. Recently, deep learning methods have been proposed to perform end-to-end outcome prediction so as to remove the reliance on manual segmentation. Unfortunately, without segmentation masks, these methods will take the whole image as input, such that makes them difficult to focus on tumor regions and potentially unable to fully leverage the prognostic information within the tumor regions. In this study, we propose a radiomics-enhanced deep multi-task framework for outcome prediction from PET/CT images, in the context of HEad and neCK TumOR segmentation and outcome prediction challenge (HECKTOR 2022). In our framework, our novelty is to incorporate radiomics as an enhancement to our recently proposed Deep Multi-task Survival model (DeepMTS). The DeepMTS jointly learns to predict the survival risk scores of patients and the segmentation masks of tumor regions. Radiomics features are extracted from the predicted tumor regions and combined with the predicted survival risk scores for final outcome prediction, through which the prognostic information in tumor regions can be further leveraged. Our method achieved a C-index of 0.681 on the testing set, placing the 2nd on the leaderboard with only 0.00068 lower in C-index than the 1st place.
translated by 谷歌翻译
In this work, we focus on the problem of safe policy transfer in reinforcement learning: we seek to leverage existing policies when learning a new task with specified constraints. This problem is important for safety-critical applications where interactions are costly and unconstrained policies can lead to undesirable or dangerous outcomes, e.g., with physical robots that interact with humans. We propose a Constrained Markov Decision Process (CMDP) formulation that simultaneously enables the transfer of policies and adherence to safety constraints. Our formulation cleanly separates task goals from safety considerations and permits the specification of a wide variety of constraints. Our approach relies on a novel extension of generalized policy improvement to constrained settings via a Lagrangian formulation. We devise a dual optimization algorithm that estimates the optimal dual variable of a target task, thus enabling safe transfer of policies derived from successor features learned on source tasks. Our experiments in simulated domains show that our approach is effective; it visits unsafe states less frequently and outperforms alternative state-of-the-art methods when taking safety constraints into account.
translated by 谷歌翻译
We present nBIIG, a neural Business Intelligence (BI) Insights Generation system. Given a table, our system applies various analyses to create corresponding RDF representations, and then uses a neural model to generate fluent textual insights out of these representations. The generated insights can be used by an analyst, via a human-in-the-loop paradigm, to enhance the task of creating compelling table reports. The underlying generative neural model is trained over large and carefully distilled data, curated from multiple BI domains. Thus, the system can generate faithful and fluent insights over open-domain tables, making it practical and useful.
translated by 谷歌翻译