语义分割是开发医学图像诊断系统的重要任务。但是,构建注释的医疗数据集很昂贵。因此,在这种情况下,半监督方法很重要。在半监督学习中,标签的质量在模型性能中起着至关重要的作用。在这项工作中,我们提出了一种新的伪标签策略,可提高用于培训学生网络的伪标签的质量。我们遵循多阶段的半监督训练方法,该方法在标记的数据集上训练教师模型,然后使用训练有素的老师将伪标签渲染用于学生培训。通过这样做,伪标签将被更新,并且随着培训的进度更加精确。上一个和我们的方法之间的关键区别在于,我们在学生培训过程中更新教师模型。因此,在学生培训过程中,提高了伪标签的质量。我们还提出了一种简单但有效的策略,以使用动量模型来提高伪标签的质量 - 训练过程中原始模型的慢复制版本。通过应用动量模型与学生培训期间的重新渲染伪标签相结合,我们在五个数据集中平均达到了84.1%的骰子分数(即Kvarsir,CVC-ClinicdB,Etis-laribpolypdb,cvc-colondb,cvc-colondb,cvc-colondb和cvc-300)和CVC-300)只有20%的数据集用作标记数据。我们的结果超过了3%的共同实践,甚至在某些数据集中取得了完全监督的结果。我们的源代码和预培训模型可在https://github.com/sun-asterisk-research/online学习SSL上找到
translated by 谷歌翻译
跨核心联合学习利用了几百个可靠的数据筒仓,并具有高速访问链接,共同训练模型。尽管这种方法成为联合学习中的流行环境,但设计出强大的拓扑以减少训练时间仍然是一个开放的问题。在本文中,我们提出了一种用于跨核心联合学习的新的多编码拓扑。我们首先使用覆盖图构造多式图。然后,我们将此多数分析为具有孤立节点的不同简单图。隔离节点的存在使我们能够执行模型聚合而无需等待其他节点,从而减少训练时间。我们进一步提出了一种新的分布式学习算法,以与我们的多编码拓扑一起使用。公共数据集的密集实验表明,与最近的最新拓扑相比,我们提出的方法大大减少了训练时间,同时确保收敛并保持模型的准确性。
translated by 谷歌翻译
从非规范目标分布中抽样是概率推断中许多应用的基本问题。 Stein变异梯度下降(SVGD)已被证明是一种强大的方法,它迭代地更新一组粒子以近似关注的分布。此外,在分析其渐近性特性时,SVGD会准确地减少到单目标优化问题,并可以看作是此单目标优化问题的概率版本。然后出现一个自然的问题:“我们可以得出多目标优化的概率版本吗?”。为了回答这个问题,我们提出了随机多重目标采样梯度下降(MT-SGD),从而使我们能够从多个非差异目标分布中采样。具体而言,我们的MT-SGD进行了中间分布的流动,逐渐取向多个目标分布,这使采样颗粒可以移动到目标分布的关节高样区域。有趣的是,渐近分析表明,正如预期的那样,我们的方法准确地减少了多级下降算法以进行多目标优化。最后,我们进行全面的实验,以证明我们进行多任务学习方法的优点。
translated by 谷歌翻译
域适应(DA)从严格的理论作品中获益,研究其富有识别特征和各个方面,例如学习领域 - 不变的表示及其权衡。然而,由于多个源域的参与和训练期间目标域的潜在不可用的域,因此似乎不是这种源DA和域泛化(DG)设置的情况非常复杂和复杂。在本文中,我们为目标一般损失开发了新的上限,吸引我们来定义两种域名不变的表示。我们进一步研究了利弊以及执行学习每个领域不变的表示的权衡。最后,我们进行实验检查这些陈述的权衡,以便在实践中提供有关如何使用它们的实践提示,并探索我们发达理论的其他有趣性质。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译
Modern deep neural networks have achieved superhuman performance in tasks from image classification to game play. Surprisingly, these various complex systems with massive amounts of parameters exhibit the same remarkable structural properties in their last-layer features and classifiers across canonical datasets. This phenomenon is known as "Neural Collapse," and it was discovered empirically by Papyan et al. \cite{Papyan20}. Recent papers have theoretically shown the global solutions to the training network problem under a simplified "unconstrained feature model" exhibiting this phenomenon. We take a step further and prove the Neural Collapse occurrence for deep linear network for the popular mean squared error (MSE) and cross entropy (CE) loss. Furthermore, we extend our research to imbalanced data for MSE loss and present the first geometric analysis for Neural Collapse under this setting.
translated by 谷歌翻译
We present a Machine Learning (ML) study case to illustrate the challenges of clinical translation for a real-time AI-empowered echocardiography system with data of ICU patients in LMICs. Such ML case study includes data preparation, curation and labelling from 2D Ultrasound videos of 31 ICU patients in LMICs and model selection, validation and deployment of three thinner neural networks to classify apical four-chamber view. Results of the ML heuristics showed the promising implementation, validation and application of thinner networks to classify 4CV with limited datasets. We conclude this work mentioning the need for (a) datasets to improve diversity of demographics, diseases, and (b) the need of further investigations of thinner models to be run and implemented in low-cost hardware to be clinically translated in the ICU in LMICs. The code and other resources to reproduce this work are available at https://github.com/vital-ultrasound/ai-assisted-echocardiography-for-low-resource-countries.
translated by 谷歌翻译
Ensemble learning combines results from multiple machine learning models in order to provide a better and optimised predictive model with reduced bias, variance and improved predictions. However, in federated learning it is not feasible to apply centralised ensemble learning directly due to privacy concerns. Hence, a mechanism is required to combine results of local models to produce a global model. Most distributed consensus algorithms, such as Byzantine fault tolerance (BFT), do not normally perform well in such applications. This is because, in such methods predictions of some of the peers are disregarded, so a majority of peers can win without even considering other peers' decisions. Additionally, the confidence score of the result of each peer is not normally taken into account, although it is an important feature to consider for ensemble learning. Moreover, the problem of a tie event is often left un-addressed by methods such as BFT. To fill these research gaps, we propose PoSw (Proof of Swarm), a novel distributed consensus algorithm for ensemble learning in a federated setting, which was inspired by particle swarm based algorithms for solving optimisation problems. The proposed algorithm is theoretically proved to always converge in a relatively small number of steps and has mechanisms to resolve tie events while trying to achieve sub-optimum solutions. We experimentally validated the performance of the proposed algorithm using ECG classification as an example application in healthcare, showing that the ensemble learning model outperformed all local models and even the FL-based global model. To the best of our knowledge, the proposed algorithm is the first attempt to make consensus over the output results of distributed models trained using federated learning.
translated by 谷歌翻译
In the era of Internet of Things (IoT), network-wide anomaly detection is a crucial part of monitoring IoT networks due to the inherent security vulnerabilities of most IoT devices. Principal Components Analysis (PCA) has been proposed to separate network traffics into two disjoint subspaces corresponding to normal and malicious behaviors for anomaly detection. However, the privacy concerns and limitations of devices' computing resources compromise the practical effectiveness of PCA. We propose a federated PCA-based Grassmannian optimization framework that coordinates IoT devices to aggregate a joint profile of normal network behaviors for anomaly detection. First, we introduce a privacy-preserving federated PCA framework to simultaneously capture the profile of various IoT devices' traffic. Then, we investigate the alternating direction method of multipliers gradient-based learning on the Grassmann manifold to guarantee fast training and the absence of detecting latency using limited computational resources. Empirical results on the NSL-KDD dataset demonstrate that our method outperforms baseline approaches. Finally, we show that the Grassmann manifold algorithm is highly adapted for IoT anomaly detection, which permits drastically reducing the analysis time of the system. To the best of our knowledge, this is the first federated PCA algorithm for anomaly detection meeting the requirements of IoT networks.
translated by 谷歌翻译
Consider $n$ points independently sampled from a density $p$ of class $\mathcal{C}^2$ on a smooth compact $d$-dimensional sub-manifold $\mathcal{M}$ of $\mathbb{R}^m$, and consider the generator of a random walk visiting these points according to a transition kernel $K$. We study the almost sure uniform convergence of this operator to the diffusive Laplace-Beltrami operator when $n$ tends to infinity. This work extends known results of the past 15 years. In particular, our result does not require the kernel $K$ to be continuous, which covers the cases of walks exploring $k$NN-random and geometric graphs, and convergence rates are given. The distance between the random walk generator and the limiting operator is separated into several terms: a statistical term, related to the law of large numbers, is treated with concentration tools and an approximation term that we control with tools from differential geometry. The convergence of $k$NN Laplacians is detailed.
translated by 谷歌翻译