展开的神经网络最近实现了最先进的MRI重建。这些网络通过在基于物理的一致性和基于神经网络的正则化之间交替来展开迭代优化算法。但是,它们需要大型神经网络的几次迭代来处理高维成像任务,例如3D MRI。这限制了基于反向传播的传统训练算法,这是由于较大的记忆力和计算梯度和存储中间激活的计算要求。为了应对这一挑战,我们提出了加速MRI(GLEAM)重建的贪婪学习,这是一种高维成像设置的有效培训策略。 GLEAM将端到端网络拆分为脱钩的网络模块。每个模块都以贪婪的方式优化,并通过脱钩的梯度更新,从而减少了训练过程中的内存足迹。我们表明,可以在多个图形处理单元(GPU)上并行执行解耦梯度更新,以进一步减少训练时间。我们介绍了2D和3D数据集的实验,包括多线圈膝,大脑和动态心脏Cine MRI。我们观察到:i)闪闪发光的概括以及最先进的记忆效率基线,例如具有相同内存足迹的梯度检查点和可逆网络,但训练速度更快1.3倍; ii)对于相同的内存足迹,闪光在2D中产生1.1dB PSNR的增益,而3D在端到端基线中产生1.8 dB。
translated by 谷歌翻译
训练深神网络是一个众所周知的高度非凸问题。在最近的作品中,显示出具有RELU激活的正则化两层神经网络没有二元性差距,这可以通过凸面程序进行全局优化。对于具有向量输出的多层线性网络,我们提出了凸双问题,并证明对偶性差距对于深度三和更深的网络而言并非零。但是,通过将深层网络修改为更强大的并行体系结构,我们表明二元性差距完全为零。因此,强大的凸面双重性具有,因此存在等效的凸面程序,使培训深层网络达到全球最优性。我们还证明,参数中的重量衰减正则化明确地通过封闭形式表达式鼓励低级溶液。对于三层非平行relu网络,我们表明对级别1数据矩阵的强双重性具有强度,但是,对白色数据矩阵的二元性差距不是零。同样,通过将神经网络体系结构转换为相应的并行版本,二元性差距消失了。
translated by 谷歌翻译
了解深度神经网络成功背后的基本机制是现代机器学习文学中的关键挑战之一。尽管尝试了很多,但尚未开发扎实的理论分析。在本文中,我们开发了一种新颖的统一框架,以通过凸优化镜头揭示隐藏的正则化机制。首先表明,具有重量衰减正则化的多个三层relu子网的训练可以等同地作为较高尺寸空间中的凸优化问题来等效地投射,其中稀疏通过组$ \ ell_1 $ -norm正常化强制实施。因此,Relu网络可以被解释为高维特征选择方法。更重要的是,我们证明,当网络宽度固定时,可以通过标准凸优化求解器全局优化等同的凸起问题通过具有多项式复杂度的标准凸优化求解器。最后,我们通过涉及合成和真实数据集的实验来数值验证我们的理论结果。
translated by 谷歌翻译
我们描述了两层向量输出relu神经网络训练问题的凸半无限频体。该半无限的双重承认有限尺寸表示,但其支持在难以表征的凸起集中。特别是,我们证明非凸神经网络训练问题相当于有限维凸形成形程序。我们的工作是第一个确定全球神经网络的全球最佳与连阳性方案之间的强大联系。因此,我们展示了神经网络如何通过半非环境矩阵分解来隐化地揭示求解连接成型程序,并从该配方中汲取关键见解。我们描述了第一算法,用于可证明导航的全局最小值的导航神经网络训练问题,这些算法是固定数据等级的样本数量的多项式,但维度指数是指数。然而,在卷积架构的情况下,计算复杂性在所有其他参数中仅在滤波器大小和多项式中是指数的。我们描述了我们能够完全找到这种神经网络训练问题的全球最佳的环境,并提供了软阈值的SVD,并提供了一种成交量松弛,保证确切地用于某些问题,并与随机的解决方案相对应实践中的梯度下降。
translated by 谷歌翻译
Giving machines the ability to imagine possible new objects or scenes from linguistic descriptions and produce their realistic renderings is arguably one of the most challenging problems in computer vision. Recent advances in deep generative models have led to new approaches that give promising results towards this goal. In this paper, we introduce a new method called DiCoMoGAN for manipulating videos with natural language, aiming to perform local and semantic edits on a video clip to alter the appearances of an object of interest. Our GAN architecture allows for better utilization of multiple observations by disentangling content and motion to enable controllable semantic edits. To this end, we introduce two tightly coupled networks: (i) a representation network for constructing a concise understanding of motion dynamics and temporally invariant content, and (ii) a translation network that exploits the extracted latent content representation to actuate the manipulation according to the target description. Our qualitative and quantitative evaluations demonstrate that DiCoMoGAN significantly outperforms existing frame-based methods, producing temporally coherent and semantically more meaningful results.
translated by 谷歌翻译
法律文本的处理一直是自然语言处理(NLP)的新兴领域的发展。法律文本包含词汇,语义,语法和形态中的独特术语和复杂的语言属性。因此,对于法律领域特定的文本简化(TS)方法的开发对于促进普通人理解法律文本并为主流法律NLP应用程序的高级模型提供投入至关重要。尽管最近的一项研究提出了一种基于规则的TS法律文本方法,但以前尚未考虑法律领域中的基于学习的TS。在这里,我们介绍了一种无监督的法律文本简化方法(USLT)。 USLT通过替换复杂的单词和分裂长句子来执行特定于域的TS。为此,USLT检测句子中的复杂单词,通过掩盖转换器模型生成候选者,并根据等级分数选择替代的候选者。之后,USLT递归将长句子分解为较短的核心和上下文句子的层次结构,同时保留语义含义。我们证明,USLT在文本简单性中优于最先进的域总TS方法,同时保持语义完整。
translated by 谷歌翻译
卷积神经网络(CNN)已成功应用于胸部X射线(CXR)图像。此外,已证明注释的边界框可以改善CNN的可解释性,以定位异常。但是,只有几个相对较小的CXR数据集可用,并且收集它们非常昂贵。在放射科医生的临床工作流程期间,可以计时地,可以以非侵入性的方式收集眼睛跟踪(ET)数据。我们使用从放射科医生记录的ET数据,同时要求CXR报告训练CNN。我们通过将它们与关键字的命令相关联,并使用它们来监督异常的本地化,从而从ET数据中提取摘要。我们表明,此方法改善了模型的解释性,而不会影响其图像级分类。
translated by 谷歌翻译
监测普遍的空气传播疾病,例如COVID-19的特征涉及呼吸评估。虽然听诊是一种症状监测的主流方法,但其诊断效用受到专用医院就诊的需求而受到阻碍。基于便携式设备上呼吸道声音的记录,持续的远程监视是一种有希望的替代方法,可以帮助筛选Covid-19。在这项研究中,我们介绍了一种新型的深度学习方法,可以将Covid-19患者与健康对照组区分开,鉴于咳嗽或呼吸声的音频记录。所提出的方法利用新型的层次谱图变压器(HST)在呼吸声的光谱图表示上。 HST在频谱图中体现了在本地窗口上的自我发挥机制,并且窗口大小在模型阶段逐渐生长,以捕获本地环境。将HST与最新的常规和深度学习基线进行比较。在跨国数据集上进行的全面演示表明,HST优于竞争方法,在检测COVID-19案例中,在接收器操作特征曲线(AUC)下达到了97%以上的面积。
translated by 谷歌翻译
我们检查了通过直播(OTA)聚合的联合学习(FL),移动用户(MUS)旨在借助聚合本地梯度的参数服务器(PS)在全球模型上达成共识。在OTA FL中,MUS在每个训练回合中使用本地数据训练他们的模型,并以未编码的方式使用相同的频带同时传输其梯度。根据超级梯度的接收信号,PS执行全局模型更新。尽管OTA FL的通信成本显着降低,但它容易受到不利的通道影响和噪声的影响。在接收器侧采用多个天线可以减少这些效果,但是对于远离PS的用户来说,路径损失仍然是一个限制因素。为了改善此问题,在本文中,我们提出了一种基于无线的层次FL方案,该方案使用中间服务器(ISS)在MUS更密集的区域形成簇。我们的计划利用OTA群集聚合与MUS与其相应的IS进行交流,而OTA全球聚合从ISS到PS。我们提出了针对所提出算法的收敛分析,并通过对使用ISS的衍生分析表达式和实验结果的数值评估显示,与单独使用较少的传输功率相比,利用ISS的结果比单独的OTA FL具有更快的收敛性和更好的性能。我们还使用不同数量的群集迭代以及不同数据集和数据分布来验证性能的结果。我们得出的结论是,群集聚集的最佳选择取决于MUS和集群之间的数据分布。
translated by 谷歌翻译
通过源至目标模态丢失图像的插图可以促进医学成像中的下游任务。合成目标图像的普遍方法涉及通过生成对抗网络(GAN)的单发映射。然而,隐式表征图像分布的GAN模型可能会受到样本保真度和多样性的有限。在这里,我们提出了一种基于对抗扩散建模Syndiff的新方法,以提高医学图像合成的可靠性。为了捕获图像分布的直接相关性,Syndiff利用条件扩散过程逐步将噪声和源图像映射到目标图像上。对于推断期间的快速准确图像采样,大扩散步骤与反向扩散方向的对抗投影结合在一起。为了对未配对的数据集进行培训,设计了一个循环一致的体系结构,并使用两个耦合的扩散过程,以合成给定源的目标和给定的目标。报告了有关联合竞争性GAN和扩散模型在多对比度MRI和MRI-CT翻译中的效用的广泛评估。我们的示威表明,Syndiff在定性和定量上都可以针对竞争基线提供出色的性能。
translated by 谷歌翻译