在存在对抗数据攻击的情况下,我们研究在线和分布式方案中的强大平均估计。在每个时间步骤中,网络中的每个代理都会收到一个潜在损坏的数据点,其中数据点最初是独立的,并且是随机变量的相同分布的样本。我们建议所有代理商在线和分发算法,以渐近地估计平均值。我们将估计值的错误结合和收敛属性提供给我们算法下的真实均值。基于网络拓扑,我们进一步评估了每个代理商在合并邻居的数据和仅在本地观察中学习之间的融合率的权衡。
translated by 谷歌翻译
时空活动预测,旨在预测特定位置和时间的用户活动,对于城市规划和移动广告等应用至关重要。基于张量分解或嵌入图的现有解决方案受到以下两个主要局限性的影响:1)忽略用户偏好的细粒度相似之处; 2)用户的建模是纠缠的。在这项工作中,我们提出了一个称为Disenhcn的超图神经网络模型,以弥合上述差距。特别是,我们首先将细粒的用户相似性和用户偏好和时空活动之间的复杂匹配统一为异质性超图。然后,我们将用户表示形式分为不同的方面(位置感知,时光和活动意识),并汇总相应的方面在构造的超图上的特征,从不同方面捕获了高阶关系,并解散了最终方面的最终影响。预言。广泛的实验表明,我们的DisenHCN在四个现实世界中的数据集上优于最新方法的最新方法14.23%至18.10%。进一步的研究还令人信服地验证了我们disenhcn中每个组件的合理性。
translated by 谷歌翻译
后门攻击已被证明是对深度学习模型的严重安全威胁,并且检测给定模型是否已成为后门成为至关重要的任务。现有的防御措施主要建立在观察到后门触发器通常尺寸很小或仅影响几个神经元激活的观察结果。但是,在许多情况下,尤其是对于高级后门攻击,违反了上述观察结果,阻碍了现有防御的性能和适用性。在本文中,我们提出了基于新观察的后门防御范围。也就是说,有效的后门攻击通常需要对中毒训练样本的高预测置信度,以确保训练有素的模型具有很高的可能性。基于此观察结果,Dtinspector首先学习一个可以改变最高信心数据的预测的补丁,然后通过检查在低信心数据上应用学习补丁后检查预测变化的比率来决定后门的存在。对五次后门攻击,四个数据集和三种高级攻击类型的广泛评估证明了拟议防御的有效性。
translated by 谷歌翻译
多个实例学习(MIL)是对诊断病理学的整个幻灯片图像(WSI)进行分类的强大方法。 MIL对WSI分类的基本挑战是发现触发袋子标签的\ textit {critical Instances}。但是,先前的方法主要是在独立和相同的分布假设(\ textit {i.i.d})下设计的,忽略了肿瘤实例或异质性之间的相关性。在本文中,我们提出了一种新颖的基于多重检测的多重实例学习(MDMIL)来解决上述问题。具体而言,MDMIL是由内部查询产生模块(IQGM)和多重检测模块(MDM)构建的,并在训练过程中基于内存的对比度损失的辅助。首先,IQGM给出了实例的概率,并通过在分布分析后汇总高度可靠的功能来为后续MDM生成内部查询(IQ)。其次,在MDM中,多重检测交叉注意(MDCA)和多头自我注意力(MHSA)合作以生成WSI的最终表示形式。在此过程中,智商和可训练的变异查询(VQ)成功建立了实例之间的联系,并显着提高了模型对异质肿瘤的鲁棒性。最后,为了进一步在特征空间中实施限制并稳定训练过程,我们采用基于内存的对比损失,即使在每次迭代中有一个样本作为输入,也可以实现WSI分类。我们对三个计算病理数据集进行实验,例如CamelyOn16,TCGA-NSCLC和TCGA-RCC数据集。优越的准确性和AUC证明了我们提出的MDMIL比其他最先进方法的优越性。
translated by 谷歌翻译
非负矩阵分解(NMF)已广泛用于降低机器学习的尺寸。但是,传统的NMF无法正确处理异常值,因此对噪声敏感。为了提高NMF的鲁棒性,本文提出了一种自适应加权NMF,它引入了权重,以强调每个数据点的不同重要性,因此降低了对噪声数据的算法敏感性。它与使用缓慢生长相似性度量的现有强大NMF大不相同。具体而言,提出了两种实现这一目标的策略:模糊加权技术和熵加权技术,两者都导致具有简单形式的迭代解决方案。实验结果表明,新方法在具有噪声的几个真实数据集上具有更健壮的特征表示,而不是进行噪声。
translated by 谷歌翻译
我们提出了一种新的基于网格的学习方法(N-Cloth),适用于合理的3D布变形预测。我们的方法是通用的,可以处理具有任意拓扑的三角网格表示的布料或障碍物。我们使用Graph卷积将布料和对象网格转换为潜在空间以减少网格空间中的非线性。我们的网络可以基于初始布网格模板和目标障碍物网的状态来预测目标3D布网格变形。我们的方法可以处理复杂的布料网格,最高可达100美元的k三角形和场景,具有与SMPL人,非SMPL人或刚体相对应的各种对象。在实践中,我们的方法展示了连续输入框架之间的良好时间相干性,并且可用于在NVIDIA GeForce RTX 3090 GPU上以30-45美元的$ 30-45 $ FPS产生合理的布料模拟。我们突出了以前基于学习的方法和基于物理的布料模拟器的好处。
translated by 谷歌翻译
数据标签噪声在监督学习应用中长期以来一直是一个重要的问题,因为它影响了许多广泛使用的分类方法的有效性。最近,重要的现实世界应用,如医学诊断和网络安全,已经产生了在Neyman-Pearson(NP)分类范式的重新兴趣,这在优选级别下限制了更严重的错误类型(例如,I错误)虽然最小化另一个(例如,II型错误)。但是,在标签噪声下对NP范例几乎没有研究。它有点令人惊讶的是,即使普通的NP分类器忽略训练阶段中的标签噪声,它们仍然能够控制I型错误,具有高概率。但是,他们支付的价格是I误差类型的过度保守性,因此电源的显着下降(即,1美元,II型错误)。假设领域专家在腐败严重程度上提供下限,我们提出了第一个理论支持算法,它适应NP范例下的训练标签噪声。由此产生的分类器不仅在所需水平下以高概率控制I误差,而且还提高功率。
translated by 谷歌翻译
非负矩阵分解(NMF)已被广泛用于学习数据的低维表示。但是,NMF对数据点的所有属性都同样关注,这不可避免地导致不准确的代表性。例如,在人面数据集中,如果图像在头上包含帽子,则应删除帽子,或者在矩阵分组期间应减少其对应属性的重要性。本文提出了一种名为熵权的NMF(EWNMF)的新型NMF,其为每个数据点的每个属性使用可优化的权重,以强调它们的重要性。通过向成本函数添加熵规范器来实现此过程,然后使用拉格朗日乘法器方法来解决问题。具有若干数据集的实验结果证明了该方法的可行性和有效性。我们在https://github.com/poisson-em/entropy-weighted-nmf提供我们的代码。
translated by 谷歌翻译
后门攻击已被证明是对深度学习系统的严重威胁,如生物识别认证和自主驾驶。有效的后门攻击可以在某些预定义条件下执行模型行为,即,触发器,但否则正常表现。然而,现有攻击的触发器直接注入像素空间,这往往可通过现有的防御和在训练和推理阶段进行视觉识别。在本文中,我们通过Trojaning频域提出了一个新的后门攻击ftrojan。关键的直觉是频域中的触发扰动对应于分散整个图像的小像素明智的扰动,打破了现有防御的底层假设,并使中毒图像从清洁的假设可视地无法区分。我们在几个数据集和任务中评估ftrojan,表明它实现了高攻击成功率,而不会显着降低良性输入的预测准确性。此外,中毒图像几乎看不见并保持高感性的质量。我们还评估FTROJAN,以防止最先进的防御以及在频域中设计的若干自适应防御。结果表明,FTROJAN可以强大地避开或显着降解这些防御的性能。
translated by 谷歌翻译
强化学习算法在竞争挑战板和视频游戏时表现良好。越来越多的研究工作侧重于提高加强学习算法的泛化能力。普通视频游戏AI学习竞赛旨在设计能够学习在培训期间出现不同游戏水平的代理商。本文总结了五年的一般视频游戏AI学习竞争。在每个版本,设计了三场新游戏。对于每场比赛,通过扰动或组合两个训练水平来产生三个测试水平。然后,我们提出了一种新颖的加强学习框架,对一般视频游戏的双程观察,在假设中,它更有可能在不同级别而不是全局信息中观察到类似的本地信息。因此,我们所提出的框架而不是直接输入基于目前游戏屏幕的单个原始像素的屏幕截图,而是将游戏屏幕的编码,转换的全局和本地观测视为两个同时输入,旨在学习播放新级别的本地信息。我们提出的框架是用三种最先进的加强学习算法实施,并在2020年普通视频游戏AI学习竞赛的游戏集上进行了测试。消融研究表明,使用编码,转换的全局和本地观察的出色性能。总体上最好的代理商进一步用作2021次竞赛版的基线。
translated by 谷歌翻译