GPT-3和Codex等非常大的语言模型(LLM)在几个自然语言任务上已经达到了最先进的性能,并且对代码也表现出了巨大的希望。LLM的一个特别令人兴奋的方面是他们进行几次射击和零射门学习的诀窍:他们可以学会在很少的示例中执行任务。很少有射击在软件工程中具有特殊的协同作用,那里有很多现象(标识符名称,API,术语,编码模式),这些现象被称为高度特定于项目的现象。但是,特定于项目的数据可能非常有限,尤其是在项目历史的早期;因此,LLM的几次学习能力可能非常相关。在本文中,我们研究了使用非常大的GPT(生成预训练的变压器)代码型模型的少量训练,并找到证据表明,一个人可以显着超过用于代码符号化的最新模型,并利用特定于项目的培训。
translated by 谷歌翻译
源代码的预训练的生成语言模型(例如PLBART,CODET5,SPT-CODE)在过去几年中对多个任务(包括代码生成和翻译)产生了强劲的结果。这些模型采用了不同的训练前目标,以自我监督的方式从非常大规模的语料库中学习代码构建的统计数据。预训练模型的成功很大程度上取决于这些预训练的目标。本文提出了一个新的预训练目标,即“归化”源代码,利用代码的双峰,双通道(正式和自然渠道)性质。与自然语言不同,代码的双峰,双通道的性质使我们能够大规模生成语义上等效的代码。我们介绍了六类的语义保存转换,以引入非自然的代码形式,然后强迫我们的模型制作开发人员编写的更自然的原创程序。学习在没有明确的手动监督的情况下,通过大型的开源代码来生成等效但更自然的代码,有助于模型学习摄入和生成代码。我们将模型在三个生成软件工程任务中微调:代码生成,代码翻译和代码改进,具有有限的人类策划标记数据并实现最先进的性能与CODET5。我们表明,我们的预训练模型在零射门和少数学习方面特别有竞争力,并且在学习代码属性(例如语法,数据流)方面更好。
translated by 谷歌翻译
训练有素的机器学习模型,利用大量的开源软件数据,现在已经成为自动化许多软件工程任务的有趣方法。几个硒任务都受到这种方法,在过去的几年里,性能逐渐改善,具有更好的模型和培训方法。更多,更多样化,清洁,标记数据更好的培训;但构建高质量的数据集是耗时和挑战。增强清洁量和多样性的方法,标记数据通常具有广泛的适用性。对于某些语言(例如,Ruby)标记的数据不那么丰富;在其他(例如,JavaScript)中,可用数据可能更多地关注某些应用域,从而更加多样化。作为围绕此类数据瓶颈,我们提出了证据表明,不同语言(执行相同功能)的人写代码相当相似,特别是保留标识符命名模式;我们进一步提出了证据表明标识符是软件工程任务培训数据的一个非常重要的要素。我们利用这种相当偶然的现象来查找可用的多语言训练数据(跨不同语言)的证据可用于放大性能。我们研究这一点3个不同的任务:代码摘要,代码检索和功能命名。我们注意到,这种数据增强方法与不同的任务,语言和机器学习模型广泛兼容。
translated by 谷歌翻译
The performance of the Deep Learning (DL) models depends on the quality of labels. In some areas, the involvement of human annotators may lead to noise in the data. When these corrupted labels are blindly regarded as the ground truth (GT), DL models suffer from performance deficiency. This paper presents a method that aims to learn a confident model in the presence of noisy labels. This is done in conjunction with estimating the uncertainty of multiple annotators. We robustly estimate the predictions given only the noisy labels by adding entropy or information-based regularizer to the classifier network. We conduct our experiments on a noisy version of MNIST, CIFAR-10, and FMNIST datasets. Our empirical results demonstrate the robustness of our method as it outperforms or performs comparably to other state-of-the-art (SOTA) methods. In addition, we evaluated the proposed method on the curated dataset, where the noise type and level of various annotators depend on the input image style. We show that our approach performs well and is adept at learning annotators' confusion. Moreover, we demonstrate how our model is more confident in predicting GT than other baselines. Finally, we assess our approach for segmentation problem and showcase its effectiveness with experiments.
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译
Nowadays, the current neural network models of dialogue generation(chatbots) show great promise for generating answers for chatty agents. But they are short-sighted in that they predict utterances one at a time while disregarding their impact on future outcomes. Modelling a dialogue's future direction is critical for generating coherent, interesting dialogues, a need that has led traditional NLP dialogue models that rely on reinforcement learning. In this article, we explain how to combine these objectives by using deep reinforcement learning to predict future rewards in chatbot dialogue. The model simulates conversations between two virtual agents, with policy gradient methods used to reward sequences that exhibit three useful conversational characteristics: the flow of informality, coherence, and simplicity of response (related to forward-looking function). We assess our model based on its diversity, length, and complexity with regard to humans. In dialogue simulation, evaluations demonstrated that the proposed model generates more interactive responses and encourages a more sustained successful conversation. This work commemorates a preliminary step toward developing a neural conversational model based on the long-term success of dialogues.
translated by 谷歌翻译
In this work, we introduce a hypergraph representation learning framework called Hypergraph Neural Networks (HNN) that jointly learns hyperedge embeddings along with a set of hyperedge-dependent embeddings for each node in the hypergraph. HNN derives multiple embeddings per node in the hypergraph where each embedding for a node is dependent on a specific hyperedge of that node. Notably, HNN is accurate, data-efficient, flexible with many interchangeable components, and useful for a wide range of hypergraph learning tasks. We evaluate the effectiveness of the HNN framework for hyperedge prediction and hypergraph node classification. We find that HNN achieves an overall mean gain of 7.72% and 11.37% across all baseline models and graphs for hyperedge prediction and hypergraph node classification, respectively.
translated by 谷歌翻译
A "heart attack" or myocardial infarction (MI), occurs when an artery supplying blood to the heart is abruptly occluded. The "gold standard" method for imaging MI is Cardiovascular Magnetic Resonance Imaging (MRI), with intravenously administered gadolinium-based contrast (late gadolinium enhancement). However, no "gold standard" fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. This has the potential to reduce the uncertainty due to the technical variability across labs and inherent problems of the data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by the Atrous Spatial Pyramid Pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: i) background, ii) heart muscle, iii) blood and iv) scar areas. New models were compared with state-of-art models and manual quantification. Our models showed favorable performance in global segmentation and scar tissue detection relative to state-of-the-art work, including a four-fold better performance in matching scar pixels to contours produced by clinicians.
translated by 谷歌翻译
Increasing popularity of deep-learning-powered applications raises the issue of vulnerability of neural networks to adversarial attacks. In other words, hardly perceptible changes in input data lead to the output error in neural network hindering their utilization in applications that involve decisions with security risks. A number of previous works have already thoroughly evaluated the most commonly used configuration - Convolutional Neural Networks (CNNs) against different types of adversarial attacks. Moreover, recent works demonstrated transferability of the some adversarial examples across different neural network models. This paper studied robustness of the new emerging models such as SpinalNet-based neural networks and Compact Convolutional Transformers (CCT) on image classification problem of CIFAR-10 dataset. Each architecture was tested against four White-box attacks and three Black-box attacks. Unlike VGG and SpinalNet models, attention-based CCT configuration demonstrated large span between strong robustness and vulnerability to adversarial examples. Eventually, the study of transferability between VGG, VGG-inspired SpinalNet and pretrained CCT 7/3x1 models was conducted. It was shown that despite high effectiveness of the attack on the certain individual model, this does not guarantee the transferability to other models.
translated by 谷歌翻译
Human Activity Recognition (HAR) is an emerging technology with several applications in surveillance, security, and healthcare sectors. Noninvasive HAR systems based on Wi-Fi Channel State Information (CSI) signals can be developed leveraging the quick growth of ubiquitous Wi-Fi technologies, and the correlation between CSI dynamics and body motions. In this paper, we propose Principal Component-based Wavelet Convolutional Neural Network (or PCWCNN) -- a novel approach that offers robustness and efficiency for practical real-time applications. Our proposed method incorporates two efficient preprocessing algorithms -- the Principal Component Analysis (PCA) and the Discrete Wavelet Transform (DWT). We employ an adaptive activity segmentation algorithm that is accurate and computationally light. Additionally, we used the Wavelet CNN for classification, which is a deep convolutional network analogous to the well-studied ResNet and DenseNet networks. We empirically show that our proposed PCWCNN model performs very well on a real dataset, outperforming existing approaches.
translated by 谷歌翻译