机器学习最近被出现为研究复杂现象的有希望的方法,其特征是丰富的数据集。特别地,以数据为中心的方法为手动检查可能错过的实验数据集中自动发现结构的可能性。在这里,我们介绍可解释的无监督监督的混合机学习方法,混合相关卷积神经网络(Hybrid-CCNN),并将其应用于使用基于Rydberg Atom阵列的可编程量子模拟器产生的实验数据。具体地,我们应用Hybrid-CCNN以通过可编程相互作用分析在方形格子上的新量子阶段。初始无监督的维度降低和聚类阶段首先揭示了五个不同的量子相位区域。在第二个监督阶段,我们通过培训完全解释的CCNN来细化这些相界并通过训练每个阶段提取相关的相关性。在条纹相中的每个相捕获量子波动中专门识别的特征空间加权和相关的相关性并鉴定两个先前未检测到的相,菱形和边界有序相位。这些观察结果表明,具有机器学习的可编程量子模拟器的组合可用作有关相关量子态的详细探索的强大工具。
translated by 谷歌翻译
In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.
translated by 谷歌翻译
Deep learning classifiers provide the most accurate means of automatically diagnosing diabetic retinopathy (DR) based on optical coherence tomography (OCT) and its angiography (OCTA). The power of these models is attributable in part to the inclusion of hidden layers that provide the complexity required to achieve a desired task. However, hidden layers also render algorithm outputs difficult to interpret. Here we introduce a novel biomarker activation map (BAM) framework based on generative adversarial learning that allows clinicians to verify and understand classifiers decision-making. A data set including 456 macular scans were graded as non-referable or referable DR based on current clinical standards. A DR classifier that was used to evaluate our BAM was first trained based on this data set. The BAM generation framework was designed by combing two U-shaped generators to provide meaningful interpretability to this classifier. The main generator was trained to take referable scans as input and produce an output that would be classified by the classifier as non-referable. The BAM is then constructed as the difference image between the output and input of the main generator. To ensure that the BAM only highlights classifier-utilized biomarkers an assistant generator was trained to do the opposite, producing scans that would be classified as referable by the classifier from non-referable scans. The generated BAMs highlighted known pathologic features including nonperfusion area and retinal fluid. A fully interpretable classifier based on these highlights could help clinicians better utilize and verify automated DR diagnosis.
translated by 谷歌翻译
Unhealthy dietary habits are considered as the primary cause of multiple chronic diseases such as obesity and diabetes. The automatic food intake monitoring system has the potential to improve the quality of life (QoF) of people with dietary related diseases through dietary assessment. In this work, we propose a novel contact-less radar-based food intake monitoring approach. Specifically, a Frequency Modulated Continuous Wave (FMCW) radar sensor is employed to recognize fine-grained eating and drinking gestures. The fine-grained eating/drinking gesture contains a series of movement from raising the hand to the mouth until putting away the hand from the mouth. A 3D temporal convolutional network (3D-TCN) is developed to detect and segment eating and drinking gestures in meal sessions by processing the Range-Doppler Cube (RD Cube). Unlike previous radar-based research, this work collects data in continuous meal sessions. We create a public dataset that contains 48 meal sessions (3121 eating gestures and 608 drinking gestures) from 48 participants with a total duration of 783 minutes. Four eating styles (fork & knife, chopsticks, spoon, hand) are included in this dataset. To validate the performance of the proposed approach, 8-fold cross validation method is applied. Experimental results show that our proposed 3D-TCN outperforms the model that combines a convolutional neural network and a long-short-term-memory network (CNN-LSTM), and also the CNN-Bidirectional LSTM model (CNN-BiLSTM) in eating and drinking gesture detection. The 3D-TCN model achieves a segmental F1-score of 0.887 and 0.844 for eating and drinking gestures, respectively. The results of the proposed approach indicate the feasibility of using radar for fine-grained eating and drinking gesture detection and segmentation in meal sessions.
translated by 谷歌翻译
The problem of approximating the Pareto front of a multiobjective optimization problem can be reformulated as the problem of finding a set that maximizes the hypervolume indicator. This paper establishes the analytical expression of the Hessian matrix of the mapping from a (fixed size) collection of $n$ points in the $d$-dimensional decision space (or $m$ dimensional objective space) to the scalar hypervolume indicator value. To define the Hessian matrix, the input set is vectorized, and the matrix is derived by analytical differentiation of the mapping from a vectorized set to the hypervolume indicator. The Hessian matrix plays a crucial role in second-order methods, such as the Newton-Raphson optimization method, and it can be used for the verification of local optimal sets. So far, the full analytical expression was only established and analyzed for the relatively simple bi-objective case. This paper will derive the full expression for arbitrary dimensions ($m\geq2$ objective functions). For the practically important three-dimensional case, we also provide an asymptotically efficient algorithm with time complexity in $O(n\log n)$ for the exact computation of the Hessian Matrix' non-zero entries. We establish a sharp bound of $12m-6$ for the number of non-zero entries. Also, for the general $m$-dimensional case, a compact recursive analytical expression is established, and its algorithmic implementation is discussed. Also, for the general case, some sparsity results can be established; these results are implied by the recursive expression. To validate and illustrate the analytically derived algorithms and results, we provide a few numerical examples using Python and Mathematica implementations. Open-source implementations of the algorithms and testing data are made available as a supplement to this paper.
translated by 谷歌翻译
Solar activity is usually caused by the evolution of solar magnetic fields. Magnetic field parameters derived from photospheric vector magnetograms of solar active regions have been used to analyze and forecast eruptive events such as solar flares and coronal mass ejections. Unfortunately, the most recent solar cycle 24 was relatively weak with few large flares, though it is the only solar cycle in which consistent time-sequence vector magnetograms have been available through the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) since its launch in 2010. In this paper, we look into another major instrument, namely the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) from 1996 to 2010. The data archive of SOHO/MDI covers more active solar cycle 23 with many large flares. However, SOHO/MDI data only has line-of-sight (LOS) magnetograms. We propose a new deep learning method, named MagNet, to learn from combined LOS magnetograms, Bx and By taken by SDO/HMI along with H-alpha observations collected by the Big Bear Solar Observatory (BBSO), and to generate vector components Bx' and By', which would form vector magnetograms with observed LOS data. In this way, we can expand the availability of vector magnetograms to the period from 1996 to present. Experimental results demonstrate the good performance of the proposed method. To our knowledge, this is the first time that deep learning has been used to generate photospheric vector magnetograms of solar active regions for SOHO/MDI using SDO/HMI and H-alpha data.
translated by 谷歌翻译
太阳耀斑,尤其是M级和X级耀斑,通常与冠状质量弹出(CMES)有关。它们是太空天气影响的最重要来源,可能会严重影响近地环境。因此,必须预测耀斑(尤其是X级),以减轻其破坏性和危险后果。在这里,我们介绍了几种统计和机器学习方法,以预测AR的耀斑指数(FI),这些方法通过考虑到一定时间间隔内的不同类耀斑的数量来量化AR的耀斑生产力。具体而言,我们的样本包括2010年5月至2017年12月在太阳能磁盘上出现的563个AR。25个磁性参数,由空中震动和磁性成像器(HMI)的太空天气HMI活性区域(Sharp)提供的太阳能动力学观测值(HMI)。 (SDO),表征了代理中存储在ARS中的冠状磁能,并用作预测因子。我们研究了这些尖锐的参数与ARS的FI与机器学习算法(样条回归)和重采样方法(合成少数群体过度采样技术,用于使用高斯噪声回归的合成少数群体过度采样技术,smogn简短)。基于既定关系,我们能够在接下来的1天内预测给定AR的FIS值。与其他4种流行的机器学习算法相比,我们的方法提高了FI预测的准确性,尤其是对于大型FI。此外,我们根据Borda Count方法从由9种不同的机器学习方法渲染的等级计算出尖锐参数的重要性。
translated by 谷歌翻译
机器学习潜力是分子模拟的重要工具,但是由于缺乏高质量数据集来训练它们的发展,它们的开发阻碍了它们。我们描述了Spice数据集,这是一种新的量子化学数据集,用于训练与模拟与蛋白质相互作用的药物样的小分子相关的潜在。它包含超过110万个小分子,二聚体,二肽和溶剂化氨基酸的构象。它包括15个元素,带电和未充电的分子以及广泛的共价和非共价相互作用。它提供了在{\ omega} b97m-d3(bj)/def2-tzVPPD理论水平以及其他有用的数量(例如多极矩和键阶)上计算出的力和能量。我们在其上训练一组机器学习潜力,并证明它们可以在化学空间的广泛区域中实现化学精度。它可以作为创建可转移的,准备使用潜在功能用于分子模拟的宝贵资源。
translated by 谷歌翻译
提出测试释放(PTR)是一个差异隐私框架,可符合局部功能的敏感性,而不是其全球敏感性。该框架通常用于以差异性私有方式释放强大的统计数据,例如中位数或修剪平均值。尽管PTR是十年前引入的常见框架,但在诸如Robust SGD之类的应用程序中使用它,我们需要许多自适应鲁棒的查询是具有挑战性的。这主要是由于缺乏Renyi差异隐私(RDP)分析,这是一种瞬间的私人深度学习方法的基础。在这项工作中,我们概括了标准PTR,并在目标函数界定全局灵敏度时得出了第一个RDP。我们证明,与直接分析的$(\ eps,\ delta)$ -DP相比,我们的RDP绑定的PTR可以得出更严格的DP保证。我们还得出了亚采样下PTR的算法特异性隐私扩增。我们表明,我们的界限比一般的上限和接近下限的界限要紧密得多。我们的RDP界限可以为PTR的许多自适应运行的组成而更严格的隐私损失计算。作为我们的分析的应用,我们表明PTR和我们的理论结果可用于设计私人变体,用于拜占庭强大的训练算法,这些变体使用可靠的统计数据用于梯度聚集。我们对不同数据集和体系结构的标签,功能和梯度损坏的设置进行实验。我们表明,与基线相比,基于PTR的私人和强大的培训算法可显着改善该实用性。
translated by 谷歌翻译
机器学习(ML)技术在教育方面越来越普遍,从预测学生辍学,到协助大学入学以及促进MOOC的兴起。考虑到这些新颖用途的快速增长,迫切需要调查ML技术如何支持长期以来的教育原则和目标。在这项工作中,我们阐明了这一复杂的景观绘制,以对教育专家的访谈进行定性见解。这些访谈包括对过去十年中著名应用ML会议上发表的ML教育(ML4ED)论文的深入评估。我们的中心研究目标是批判性地研究这些论文的陈述或暗示教育和社会目标如何与他们解决的ML问题保持一致。也就是说,技术问题的提出,目标,方法和解释结果与手头的教育问题保持一致。我们发现,在ML生命周期的两个部分中存在跨学科的差距,并且尤其突出:从教育目标和将预测转换为干预措施的ML问题的提出。我们使用这些见解来提出扩展的ML生命周期,这也可能适用于在其他领域中使用ML。我们的工作加入了越来越多的跨教育和ML研究的荟萃分析研究,以及对ML社会影响的批判性分析。具体而言,它填补了对机器学习的主要技术理解与与学生合作和政策合作的教育研究人员的观点之间的差距。
translated by 谷歌翻译