评估胎儿和母亲的健康对于预防和识别怀孕可能的并发症至关重要。本文重点介绍了母亲自己能够用最小的监督和胎儿和产妇健康有效地使用的装置,同时安全,舒适,易于使用。所提出的设备使用母亲子宫内的单个加速度计的带以记录所需信息。该设备预计将在长期长期监测母亲和胎儿,并提供具有有用信息的医疗专业人员,否则他们将由于目前进行健康监测的频率低频率而忽略。本文表明,即使在存在温和的干扰情况下,母亲和胎儿运动的呼吸信息的同时测量实际上是可能的,如果预计该设备延长延长,则需要考虑该装置。
translated by 谷歌翻译
Drug dosing is an important application of AI, which can be formulated as a Reinforcement Learning (RL) problem. In this paper, we identify two major challenges of using RL for drug dosing: delayed and prolonged effects of administering medications, which break the Markov assumption of the RL framework. We focus on prolongedness and define PAE-POMDP (Prolonged Action Effect-Partially Observable Markov Decision Process), a subclass of POMDPs in which the Markov assumption does not hold specifically due to prolonged effects of actions. Motivated by the pharmacology literature, we propose a simple and effective approach to converting drug dosing PAE-POMDPs into MDPs, enabling the use of the existing RL algorithms to solve such problems. We validate the proposed approach on a toy task, and a challenging glucose control task, for which we devise a clinically-inspired reward function. Our results demonstrate that: (1) the proposed method to restore the Markov assumption leads to significant improvements over a vanilla baseline; (2) the approach is competitive with recurrent policies which may inherently capture the prolonged effect of actions; (3) it is remarkably more time and memory efficient than the recurrent baseline and hence more suitable for real-time dosing control systems; and (4) it exhibits favorable qualitative behavior in our policy analysis.
translated by 谷歌翻译
Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services which require low delay and high accuracy. Sampling rate adaption which dynamically configures the sampling rates of industrial IoT devices according to network conditions, is the key in minimizing the service delay. In this paper, we investigate the collaborative DNN inference problem in industrial IoT networks. To capture the channel variation and task arrival randomness, we formulate the problem as a constrained Markov decision process (CMDP). Specifically, sampling rate adaption, inference task offloading and edge computing resource allocation are jointly considered to minimize the average service delay while guaranteeing the long-term accuracy requirements of different inference services. Since CMDP cannot be directly solved by general reinforcement learning (RL) algorithms due to the intractable long-term constraints, we first transform the CMDP into an MDP by leveraging the Lyapunov optimization technique. Then, a deep RL-based algorithm is proposed to solve the MDP. To expedite the training process, an optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal edge computing resource allocation. Extensive simulation results are provided to demonstrate that the proposed RL-based algorithm can significantly reduce the average service delay while preserving long-term inference accuracy with a high probability.
translated by 谷歌翻译
Human Activity Recognition (HAR) is one of the core research areas in mobile and wearable computing. With the application of deep learning (DL) techniques such as CNN, recognizing periodic or static activities (e.g, walking, lying, cycling, etc.) has become a well studied problem. What remains a major challenge though is the sporadic activity recognition (SAR) problem, where activities of interest tend to be non periodic, and occur less frequently when compared with the often large amount of irrelevant background activities. Recent works suggested that sequential DL models (such as LSTMs) have great potential for modeling nonperiodic behaviours, and in this paper we studied some LSTM training strategies for SAR. Specifically, we proposed two simple yet effective LSTM variants, namely delay model and inverse model, for two SAR scenarios (with and without time critical requirement). For time critical SAR, the delay model can effectively exploit predefined delay intervals (within tolerance) in form of contextual information for improved performance. For regular SAR task, the second proposed, inverse model can learn patterns from the time series in an inverse manner, which can be complementary to the forward model (i.e.,LSTM), and combining both can boost the performance. These two LSTM variants are very practical, and they can be deemed as training strategies without alteration of the LSTM fundamentals. We also studied some additional LSTM training strategies, which can further improve the accuracy. We evaluated our models on two SAR and one non-SAR datasets, and the promising results demonstrated the effectiveness of our approaches in HAR applications.
translated by 谷歌翻译
Network models are an essential block of modern networks. For example, they are widely used in network planning and optimization. However, as networks increase in scale and complexity, some models present limitations, such as the assumption of markovian traffic in queuing theory models, or the high computational cost of network simulators. Recent advances in machine learning, such as Graph Neural Networks (GNN), are enabling a new generation of network models that are data-driven and can learn complex non-linear behaviors. In this paper, we present RouteNet-Fermi, a custom GNN model that shares the same goals as queuing theory, while being considerably more accurate in the presence of realistic traffic models. The proposed model predicts accurately the delay, jitter, and loss in networks. We have tested RouteNet-Fermi in networks of increasing size (up to 300 nodes), including samples with mixed traffic profiles -- e.g., with complex non-markovian models -- and arbitrary routing and queue scheduling configurations. Our experimental results show that RouteNet-Fermi achieves similar accuracy as computationally-expensive packet-level simulators and it is able to accurately scale to large networks. For example, the model produces delay estimates with a mean relative error of 6.24% when applied to a test dataset with 1,000 samples, including network topologies one order of magnitude larger than those seen during training.
translated by 谷歌翻译
Recent advances in distributed artificial intelligence (AI) have led to tremendous breakthroughs in various communication services, from fault-tolerant factory automation to smart cities. When distributed learning is run over a set of wirelessly connected devices, random channel fluctuations and the incumbent services running on the same network impact the performance of both distributed learning and the coexisting service. In this paper, we investigate a mixed service scenario where distributed AI workflow and ultra-reliable low latency communication (URLLC) services run concurrently over a network. Consequently, we propose a risk sensitivity-based formulation for device selection to minimize the AI training delays during its convergence period while ensuring that the operational requirements of the URLLC service are met. To address this challenging coexistence problem, we transform it into a deep reinforcement learning problem and address it via a framework based on soft actor-critic algorithm. We evaluate our solution with a realistic and 3GPP-compliant simulator for factory automation use cases. Our simulation results confirm that our solution can significantly decrease the training delay of the distributed AI service while keeping the URLLC availability above its required threshold and close to the scenario where URLLC solely consumes all network resources.
translated by 谷歌翻译
Low Earth Orbit (LEO) constellations, each comprising a large number of satellites, have become a new source of big data "from the sky". Downloading such data to a ground station (GS) for big data analytics demands very high bandwidth and involves large propagation delays. Federated Learning (FL) offers a promising solution because it allows data to stay in-situ (never leaving satellites) and it only needs to transmit machine learning model parameters (trained on the satellites' data). However, the conventional, synchronous FL process can take several days to train a single FL model in the context of satellite communication (Satcom), due to a bottleneck caused by straggler satellites. In this paper, we propose an asynchronous FL framework for LEO constellations called AsyncFLEO to improve FL efficiency in Satcom. Not only does AsynFLEO address the bottleneck (idle waiting) in synchronous FL, but it also solves the issue of model staleness caused by straggler satellites. AsyncFLEO utilizes high-altitude platforms (HAPs) positioned "in the sky" as parameter servers, and consists of three technical components: (1) a ring-of-stars communication topology, (2) a model propagation algorithm, and (3) a model aggregation algorithm with satellite grouping and staleness discounting. Our extensive evaluation with both IID and non-IID data shows that AsyncFLEO outperforms the state of the art by a large margin, cutting down convergence delay by 22 times and increasing accuracy by 40%.
translated by 谷歌翻译
Communications systems to date are primarily designed with the goal of reliable (error-free) transfer of digital sequences (bits). Next generation (NextG) communication systems are beginning to explore shifting this design paradigm of reliably decoding bits to reliably executing a given task. Task-oriented communications system design is likely to find impactful applications, for example, considering the relative importance of messages. In this paper, a wireless signal classification is considered as the task to be performed in the NextG Radio Access Network (RAN) for signal intelligence and spectrum awareness applications such as user equipment (UE) identification and authentication, and incumbent signal detection for spectrum co-existence. For that purpose, edge devices collect wireless signals and communicate with the NextG base station (gNodeB) that needs to know the signal class. Edge devices may not have sufficient processing power and may not be trusted to perform the signal classification task, whereas the transfer of the captured signals from the edge devices to the gNodeB may not be efficient or even feasible subject to stringent delay, rate, and energy restrictions. We present a task-oriented communications approach, where all the transmitter, receiver and classifier functionalities are jointly trained as two deep neural networks (DNNs), one for the edge device and another for the gNodeB. We show that this approach achieves better accuracy with smaller DNNs compared to the baselines that treat communications and signal classification as two separate tasks. Finally, we discuss how adversarial machine learning poses a major security threat for the use of DNNs for task-oriented communications. We demonstrate the major performance loss under backdoor (Trojan) attacks and adversarial (evasion) attacks that target the training and test processes of task-oriented communications.
translated by 谷歌翻译
In recent years, vision-centric perception has flourished in various autonomous driving tasks, including 3D detection, semantic map construction, motion forecasting, and depth estimation. Nevertheless, the latency of vision-centric approaches is too high for practical deployment (e.g., most camera-based 3D detectors have a runtime greater than 300ms). To bridge the gap between ideal research and real-world applications, it is necessary to quantify the trade-off between performance and efficiency. Traditionally, autonomous-driving perception benchmarks perform the offline evaluation, neglecting the inference time delay. To mitigate the problem, we propose the Autonomous-driving StreAming Perception (ASAP) benchmark, which is the first benchmark to evaluate the online performance of vision-centric perception in autonomous driving. On the basis of the 2Hz annotated nuScenes dataset, we first propose an annotation-extending pipeline to generate high-frame-rate labels for the 12Hz raw images. Referring to the practical deployment, the Streaming Perception Under constRained-computation (SPUR) evaluation protocol is further constructed, where the 12Hz inputs are utilized for streaming evaluation under the constraints of different computational resources. In the ASAP benchmark, comprehensive experiment results reveal that the model rank alters under different constraints, suggesting that the model latency and computation budget should be considered as design choices to optimize the practical deployment. To facilitate further research, we establish baselines for camera-based streaming 3D detection, which consistently enhance the streaming performance across various hardware. ASAP project page: https://github.com/JeffWang987/ASAP.
translated by 谷歌翻译
Edge-assisted vehicle-to-everything (V2X) motion planning is an emerging paradigm to achieve safe and efficient autonomous driving, since it leverages the global position information shared among multiple vehicles. However, due to the imperfect channel state information (CSI), the position information of vehicles may become outdated and inaccurate. Conventional methods ignoring the communication delays could severely jeopardize driving safety. To fill this gap, this paper proposes a robust V2X motion planning policy that adapts between competitive driving under a low communication delay and conservative driving under a high communication delay, and guarantees small communication delays at key waypoints via power control. This is achieved by integrating the vehicle mobility and communication delay models and solving a joint design of motion planning and power control problem via the block coordinate descent framework. Simulation results show that the proposed driving policy achieves the smallest collision ratio compared with other benchmark policies.
translated by 谷歌翻译