The widespread of false information is a rising concern worldwide with critical social impact, inspiring the emergence of fact-checking organizations to mitigate misinformation dissemination. However, human-driven verification leads to a time-consuming task and a bottleneck to have checked trustworthy information at the same pace they emerge. Since misinformation relates not only to the content itself but also to other social features, this paper addresses automatic misinformation checking in social networks from a multimodal perspective. Moreover, as simply naming a piece of news as incorrect may not convince the citizen and, even worse, strengthen confirmation bias, the proposal is a modality-level explainable-prone misinformation classifier framework. Our framework comprises a misinformation classifier assisted by explainable methods to generate modality-oriented explainable inferences. Preliminary findings show that the misinformation classifier does benefit from multimodal information encoding and the modality-oriented explainable mechanism increases both inferences' interpretability and completeness.
translated by 谷歌翻译
知识库及其以知识图(kg)形式的表示自然是不完整的。由于科学和工业应用已广泛采用,因此对完成信息的解决方案的需求很高。最近的一些作品通过学习实体和关系的嵌入来应对这一挑战,然后雇用它们来预测实体之间的新关系。尽管它们加重了,但大多数方法仅着眼于学习嵌入的当地邻居。结果,他们可能无法通过忽视长期依赖性和实体语义的传播来捕获KGS的上下文信息。在此手稿中,我们提出{\ ae} MP(来自多种模式的注意力嵌入),这是一种通过以下方式学习上下文化表示的新颖模型:实体的本地语义,同时着眼于邻里的各个方面; (ii)通过利用道路及其之间的关系来捕获语义上下文。我们的经验发现吸引了人们对注意力机制如何改善实体的上下文表示以及结合实体和语义路径环境如何改善实体的一般表示和关系预测的见解。几个大知识图基准的实验结果表明,{\ ae} MP的表现要优于最先进的关系预测方法。
translated by 谷歌翻译
Stress has a great effect on people's lives that can not be understated. While it can be good, since it helps humans to adapt to new and different situations, it can also be harmful when not dealt with properly, leading to chronic stress. The objective of this paper is developing a stress monitoring solution, that can be used in real life, while being able to tackle this challenge in a positive way. The SMILE data set was provided to team Anxolotl, and all it was needed was to develop a robust model. We developed a supervised learning model for classification in Python, presenting the final result of 64.1% in accuracy and a f1-score of 54.96%. The resulting solution stood the robustness test, presenting low variation between runs, which was a major point for it's possible integration in the Anxolotl app in the future.
translated by 谷歌翻译
Spurious correlations in training data often lead to robustness issues since models learn to use them as shortcuts. For example, when predicting whether an object is a cow, a model might learn to rely on its green background, so it would do poorly on a cow on a sandy background. A standard dataset for measuring state-of-the-art on methods mitigating this problem is Waterbirds. The best method (Group Distributionally Robust Optimization - GroupDRO) currently achieves 89\% worst group accuracy and standard training from scratch on raw images only gets 72\%. GroupDRO requires training a model in an end-to-end manner with subgroup labels. In this paper, we show that we can achieve up to 90\% accuracy without using any sub-group information in the training set by simply using embeddings from a large pre-trained vision model extractor and training a linear classifier on top of it. With experiments on a wide range of pre-trained models and pre-training datasets, we show that the capacity of the pre-training model and the size of the pre-training dataset matters. Our experiments reveal that high capacity vision transformers perform better compared to high capacity convolutional neural networks, and larger pre-training dataset leads to better worst-group accuracy on the spurious correlation dataset.
translated by 谷歌翻译
Some recent pieces of work in the Machine Learning (ML) literature have demonstrated the usefulness of assessing which observations are hardest to have their label predicted accurately. By identifying such instances, one may inspect whether they have any quality issues that should be addressed. Learning strategies based on the difficulty level of the observations can also be devised. This paper presents a set of meta-features that aim at characterizing which instances of a dataset are hardest to have their label predicted accurately and why they are so, aka instance hardness measures. Both classification and regression problems are considered. Synthetic datasets with different levels of complexity are built and analyzed. A Python package containing all implementations is also provided.
translated by 谷歌翻译
Developing robust and fair AI systems require datasets with comprehensive set of labels that can help ensure the validity and legitimacy of relevant measurements. Recent efforts, therefore, focus on collecting person-related datasets that have carefully selected labels, including sensitive characteristics, and consent forms in place to use those attributes for model testing and development. Responsible data collection involves several stages, including but not limited to determining use-case scenarios, selecting categories (annotations) such that the data are fit for the purpose of measuring algorithmic bias for subgroups and most importantly ensure that the selected categories/subcategories are robust to regional diversities and inclusive of as many subgroups as possible. Meta, in a continuation of our efforts to measure AI algorithmic bias and robustness (https://ai.facebook.com/blog/shedding-light-on-fairness-in-ai-with-a-new-data-set), is working on collecting a large consent-driven dataset with a comprehensive list of categories. This paper describes our proposed design of such categories and subcategories for Casual Conversations v2.
translated by 谷歌翻译
社交媒体平台主持了有关每天出现的各种主题的讨论。理解所有内容并将其组织成类别是一项艰巨的任务。处理此问题的一种常见方法是依靠主题建模,但是使用此技术发现的主题很难解释,并且从语料库到语料库可能会有所不同。在本文中,我们提出了基于推文主题分类的新任务,并发布两个相关的数据集。鉴于涵盖社交媒体中最重要的讨论点的广泛主题,我们提供了最近时间段的培训和测试数据,可用于评估推文分类模型。此外,我们在任务上对当前的通用和领域特定语言模型进行定量评估和分析,这为任务的挑战和性质提供了更多见解。
translated by 谷歌翻译
本文介绍了基于2022年国际生物识别技术联合会议(IJCB 2022)举行的基于隐私感知合成训练数据(SYN-MAD)的面部变形攻击检测的摘要。该竞赛吸引了来自学术界和行业的12个参与团队,并在11个不同的国家 /地区举行。最后,参与团队提交了七个有效的意见书,并由组织者进行评估。竞争是为了介绍和吸引解决方案的解决方案,这些解决方案涉及检测面部变形攻击的同时,同时出于道德和法律原因保护人们的隐私。为了确保这一点,培训数据仅限于组织者提供的合成数据。提交的解决方案提出了创新,导致在许多实验环境中表现优于所考虑的基线。评估基准现在可在以下网址获得:https://github.com/marcohuber/syn-mad-2022。
translated by 谷歌翻译
神经进化可以通过应用进化计算的技术来自动化人工神经网络的产生。这些方法的主要目标是构建最大程度地提高预测性能的模型,有时还具有最大程度地减少计算复杂性的目标。尽管演变的模型在竞争成果方面取得了竞争成果,但它们对对抗性实例的稳健性(在关键方案中成为关注点)受到了有限的关注。在本文中,我们评估了通过CIFAR-10图像分类任务的两种突出的神经进化方法发现的模型的对抗性鲁棒性:密度和NSGA-NET。由于这些模型是公开可用的,因此我们考虑白盒不靶向的攻击,其中扰动是由L2或Linfital-norm界定的。与手动设计的网络类似,我们的结果表明,当通过迭代方法攻击演变的模型时,它们的准确性通常在两个距离指标下降至或接近零。密集的模型是这种趋势的例外,显示了L2威胁模型下的某些阻力,即使在迭代攻击中,其精度也从93.70%下降到18.10%。此外,我们分析了在网络第一层之前应用于数据的预处理的影响。我们的观察结果表明,其中一些技术会加剧添加到原始输入中的扰动,从而可能损害鲁棒性。因此,当自动设计网络的应用程序时,不应忽略此选择。
translated by 谷歌翻译
在生成模型的背景下,近年来,文本到图像生成取得了令人印象深刻的结果。提出了使用不同方法的模型,并在大量的文本和图像对数据集中进行了培训。但是,某些方法依赖于预训练的模型,例如生成对抗网络,通过使用基于梯度的方法来更新潜在矢量的生成模型的潜在空间,并依赖于余弦功能(例如余弦功能)。在这项工作中,我们通过提出使用协方差矩阵适应演化策略来探索生成对手网络的潜在空间,从而遵循不同的方向。我们将这种方法与使用亚当和混合策略的方法进行了比较。我们设计了一项实验研究,以使用不同的文本输入来比较三种方法,通过根据所得样品的投影调整评估方法来比较图像生成,以检查分布的多样性。结果证明,进化方法在样品的产生中获得了更多的多样性,从而探索了所得网格的不同区域。此外,我们表明混合方法结合了基于梯度和进化方法的探索区域,利用结果的质量。
translated by 谷歌翻译