模仿学习在有效地学习政策方面对复杂的决策问题有着巨大的希望。当前的最新算法经常使用逆增强学习(IRL),在给定一组专家演示的情况下,代理会替代奖励功能和相关的最佳策略。但是,这种IRL方法通常需要在复杂控制问题上进行实质性的在线互动。在这项工作中,我们提出了正规化的最佳运输(ROT),这是一种新的模仿学习算法,基于最佳基于最佳运输轨迹匹配的最新进展。我们的主要技术见解是,即使只有少量演示,即使只有少量演示,也可以自适应地将轨迹匹配的奖励与行为克隆相结合。我们对横跨DeepMind Control Suite,OpenAI Robotics和Meta-World基准的20个视觉控制任务进行的实验表明,与先前最新的方法相比,平均仿真达到了90%的专家绩效的速度,达到了90%的专家性能。 。在现实世界的机器人操作中,只有一次演示和一个小时的在线培训,ROT在14个任务中的平均成功率为90.1%。
translated by 谷歌翻译
Differentiable Search Indices (DSIs) encode a corpus of documents in the parameters of a model and use the same model to map queries directly to relevant document identifiers. Despite the strong performance of DSI models, deploying them in situations where the corpus changes over time is computationally expensive because reindexing the corpus requires re-training the model. In this work, we introduce DSI++, a continual learning challenge for DSI to incrementally index new documents while being able to answer queries related to both previously and newly indexed documents. Across different model scales and document identifier representations, we show that continual indexing of new documents leads to considerable forgetting of previously indexed documents. We also hypothesize and verify that the model experiences forgetting events during training, leading to unstable learning. To mitigate these issues, we investigate two approaches. The first focuses on modifying the training dynamics. Flatter minima implicitly alleviate forgetting, so we optimize for flatter loss basins and show that the model stably memorizes more documents (+12\%). Next, we introduce a generative memory to sample pseudo-queries for documents and supplement them during continual indexing to prevent forgetting for the retrieval task. Extensive experiments on novel continual indexing benchmarks based on Natural Questions (NQ) and MS MARCO demonstrate that our proposed solution mitigates forgetting by a significant margin. Concretely, it improves the average Hits@10 by $+21.1\%$ over competitive baselines for NQ and requires $6$ times fewer model updates compared to re-training the DSI model for incrementally indexing five corpora in a sequence.
translated by 谷歌翻译
We present DyFOS, an active perception method that Dynamically Finds Optimal States to minimize localization error while avoiding obstacles and occlusions. We consider the scenario where a ground target without any exteroceptive sensors must rely on an aerial observer for pose and uncertainty estimates to localize itself along an obstacle-filled path. The observer uses a downward-facing camera to estimate the target's pose and uncertainty. However, the pose uncertainty is a function of the states of the observer, target, and surrounding environment. To find an optimal state that minimizes the target's localization uncertainty, DyFOS uses a localization error prediction pipeline in an optimization search. Given the states mentioned above, the pipeline predicts the target's localization uncertainty with the help of a trained, complex state-dependent sensor measurement model (which is a probabilistic neural network in our case). Our pipeline also predicts target occlusion and obstacle collision to remove undesirable observer states. The output of the optimization search is an optimal observer state that minimizes target localization uncertainty while avoiding occlusion and collision. We evaluate the proposed method using numerical and simulated (Gazebo) experiments. Our results show that DyFOS is almost 100x faster than yet as good as brute force. Furthermore, DyFOS yielded lower localization errors than random and heuristic searches.
translated by 谷歌翻译
The domain of joint vision-language understanding, especially in the context of reasoning in Visual Question Answering (VQA) models, has garnered significant attention in the recent past. While most of the existing VQA models focus on improving the accuracy of VQA, the way models arrive at an answer is oftentimes a black box. As a step towards making the VQA task more explainable and interpretable, our method is built upon the SOTA VQA framework by augmenting it with an end-to-end explanation generation module. In this paper, we investigate two network architectures, including Long Short-Term Memory (LSTM) and Transformer decoder, as the explanation generator. Our method generates human-readable textual explanations while maintaining SOTA VQA accuracy on the GQA-REX (77.49%) and VQA-E (71.48%) datasets. Approximately 65.16% of the generated explanations are approved by humans as valid. Roughly 60.5% of the generated explanations are valid and lead to the correct answers.
translated by 谷歌翻译
Federated learning (FL) on deep neural networks facilitates new applications at the edge, especially for wearable and Internet-of-Thing devices. Such devices capture a large and diverse amount of data, but they have memory, compute, power, and connectivity constraints which hinder their participation in FL. We propose Centaur, a multitier FL framework, enabling ultra-constrained devices to efficiently participate in FL on large neural nets. Centaur combines two major ideas: (i) a data selection scheme to choose a portion of samples that accelerates the learning, and (ii) a partition-based training algorithm that integrates both constrained and powerful devices owned by the same user. Evaluations, on four benchmark neural nets and three datasets, show that Centaur gains ~10% higher accuracy than local training on constrained devices with ~58% energy saving on average. Our experimental results also demonstrate the superior efficiency of Centaur when dealing with imbalanced data, client participation heterogeneity, and various network connection probabilities.
translated by 谷歌翻译
Explainable AI (XAI) is widely viewed as a sine qua non for ever-expanding AI research. A better understanding of the needs of XAI users, as well as human-centered evaluations of explainable models are both a necessity and a challenge. In this paper, we explore how HCI and AI researchers conduct user studies in XAI applications based on a systematic literature review. After identifying and thoroughly analyzing 85 core papers with human-based XAI evaluations over the past five years, we categorize them along the measured characteristics of explanatory methods, namely trust, understanding, fairness, usability, and human-AI team performance. Our research shows that XAI is spreading more rapidly in certain application domains, such as recommender systems than in others, but that user evaluations are still rather sparse and incorporate hardly any insights from cognitive or social sciences. Based on a comprehensive discussion of best practices, i.e., common models, design choices, and measures in user studies, we propose practical guidelines on designing and conducting user studies for XAI researchers and practitioners. Lastly, this survey also highlights several open research directions, particularly linking psychological science and human-centered XAI.
translated by 谷歌翻译
我们假设现有的句子级机器翻译(MT)指标在人类参考包含歧义时会效率降低。为了验证这一假设,我们提出了一种非常简单的方法,用于扩展预审计的指标以在文档级别合并上下文。我们将我们的方法应用于三个流行的指标,即Bertscore,Prism和Comet,以及无参考的公制Comet-QE。我们使用提供的MQM注释评估WMT 2021指标共享任务的扩展指标。我们的结果表明,扩展指标的表现在约85%的测试条件下优于其句子级别的级别,而在排除低质量人类参考的结果时。此外,我们表明我们的文档级扩展大大提高了其对话语现象任务的准确性,从而优于专用基线高达6.1%。我们的实验结果支持我们的初始假设,并表明对指标的简单扩展使他们能够利用上下文来解决参考中的歧义。
translated by 谷歌翻译
现代社会有兴趣由于复杂的相机的激增而捕获高分辨率和优质图像。但是,如果在计算机视觉任务中使用了此类图像,则图像中的噪声污染不仅较低,而且相反会影响随后的过程,例如遥感,对象跟踪等。高分辨率图像的时间处理受图像捕获仪器的硬件限制的限制。 Geodesic Gramian denoising(GGD)是一种基于多种噪声滤波方法,我们在过去的研究中介绍了该方法,它利用了Geodesics的Gramian Gramian矩阵的一些突出的奇异向量进行噪声滤波过程。 GDD遇到$ \ MATHCAL {O}(n^6)$时,GDD的适用性受到限制^2 $数据矩阵由单数值分解(SVD)实现。在这项研究中,我们通过用四种不同的单数矢量近似技术代替其SVD步骤来提高GGD框架的效率。在这里,我们比较集成到GGD中的四个技术之间的计算时间和噪声过滤性能。
translated by 谷歌翻译
在本文中,我们提出了针对无人接地车辆(UGV)的新的控制屏障功能(CBF),该功能有助于避免与运动学(非零速度)障碍物发生冲突。尽管当前的CBF形式已经成功地保证了与静态障碍物的安全/碰撞避免安全性,但动态案例的扩展已获得有限的成功。此外,借助UGV模型,例如Unicycle或自行车,现有CBF的应用在控制方面是保守的,即在某些情况下不可能进行转向/推力控制。从经典的碰撞锥中汲取灵感来避免轨迹规划,我们介绍了其新颖的CBF配方,并具有对独轮车和自行车模型的安全性保证。主要思想是确保障碍物的速度W.R.T.车辆总是指向车辆。因此,我们构建了一个约束,该约束确保速度向量始终避开指向车辆的向量锥。这种新控制方法的功效在哥白尼移动机器人上进行了实验验证。我们将其进一步扩展到以自行车模型的形式扩展到自动驾驶汽车,并在Carla模拟器中的各种情况下证明了避免碰撞。
translated by 谷歌翻译
我们设计和分析了量子变压器,扩展了最先进的经典变压器神经网络体系结构,已知在自然语言处理和图像分析中表现出色。在先前用于数据加载和正交神经层的参数化量子电路的工作的基础上,我们引入了三种量子注意机制,包括基于复合矩阵的量子变压器。这些量子体系结构可以使用浅量子电路构建,并可以提供定性不同的分类模型。与最佳的经典变压器和其他经典基准相比,我们对标准医疗图像数据集进行了量子变压器的广泛模拟,这些量子变压器表现出竞争力,有时表现更好。与经典算法相对于分类图像的大小,我们的量子注意层的计算复杂性被证明是有利的。与拥有数百万参数的最佳经典方法相比,我们的量子体系结构具有数千个参数。最后,我们在超导量子计算机上实施了量子变压器,并获得了多达六个量子实验的令人鼓舞的结果。
translated by 谷歌翻译