人为决策的合作努力实现超出人类或人工智能表现的团队绩效。但是,许多因素都会影响人类团队的成功,包括用户的领域专业知识,AI系统的心理模型,对建议的信任等等。这项工作检查了用户与三种模拟算法模型的互动,所有这些模型都具有相似的精度,但对其真正的正面和真实负率进行了不同的调整。我们的研究检查了在非平凡的血管标签任务中的用户性能,参与者表明给定的血管是流动还是停滞。我们的结果表明,虽然AI-Assistant的建议可以帮助用户决策,但用户相对于AI的基线性能和AI错误类型的补充调整等因素会显着影响整体团队的整体绩效。新手用户有所改善,但不能达到AI的准确性。高度熟练的用户通常能够识别何时应遵循AI建议,并通常保持或提高其性能。与AI相似的准确性水平的表演者在AI建议方面是最大的变化。此外,我们发现用户对AI的性能亲戚的看法也对给出AI建议时的准确性是否有所提高产生重大影响。这项工作提供了有关与人类协作有关的因素的复杂性的见解,并提供了有关如何开发以人为中心的AI算法来补充用户在决策任务中的建议。
translated by 谷歌翻译
软机器人操纵器对于在受限环境中的医疗干预或工业检查等一系列应用都具有吸引力。文献中已经提出了无数的软机器人操纵器,但是它们的设计往往相对相似,并且通常提供相对较低的力。这限制了他们可以携带的有效载荷,因此限制了它们的可用性。在公共框架下不可用不同设计的力的比较,并且设计具有不同的直径和功能,使它们难以比较。在本文中,我们介绍了一种软机器人操纵器的设计,该设计的优化为最大化其力,同时尊重典型的应用程序约束,例如大小,工作区,有效负载能力和最大压力。此处介绍的设计具有一个优势,即它变为最佳设计,因为它被加压到朝不同方向移动,这会导致较高的横向力。该机器人是使用一组原理设计的,因此可以适应其他应用程序。我们还为软机器人操纵器提供了非二维分析,并将其应用于此处提出的设计的性能与文献中其他设计的性能。我们表明,我们的设计比同一类别中的其他设计具有更高的力量。实验结果证实了我们提出的设计的较高力量。
translated by 谷歌翻译
我们提供了公式和开源工具,以使用学识渊博的前动力学和设备计算来实现传感器/执行器系统的内部模型预测控制。微控制器单元(MCUS)在与传感器和执行器共关联时计算预测和控制任务的微控制器单元(MCUS)可以实现内部不受束缚的行为。在这种方法中,小型参数大小神经网络模型离线学习前进运动学。我们的开源编译器NN4MC生成代码以将这些预测卸载到MCUS上。然后,牛顿 - 拉夫森求解器实时计算控件输入。我们首先基准在质量 - 弹簧抑制剂模拟上针对PID控制器的这种非线性控制方法。然后,我们在两个具有不同传感,驱动和计算硬件的实验钻机上研究实验结果:具有嵌入式照明传感器的基于肌腱的平台和带有磁性传感器的基于HASEL的平台。实验结果表明,具有较小的内存足迹(小于或等于闪存的6.4%)的参考路径(大于或等于120 Hz)的有效高带宽跟踪。在基于肌腱的平台中,测得的误差之后路径不超过2mm。在基于HASEL的平台中,模拟路径以下误差不超过1mm。这种方法在ARM Cortex-M4F设备中的平均功耗为45.4 MW。这种控制方法还与Tensorflow Lite模型和等效的在设备代码兼容。内物质智能使一类新的复合材料将自主权注入具有精制人工本体感受的结构和系统。
translated by 谷歌翻译
近年来,自我监督的学习在涉及计算机视觉和自然语言处理的应用中取得了重大成功。借口任务的类型对性能提升至关重要。一个常见的借口任务是图像对图像之间的相似性和异化的量度。在这种情况下,构成负对的两个图像与人类明显不同。然而,在昆虫学中,物种几乎无法区分,因此难以区分。在这项研究中,我们探讨了暹罗神经网络的表现,通过学习使用对比损失来推动大黄蜂物种对的嵌入,这是不同的,并将相似的嵌入物汇集在一起。我们的实验结果显示了零射击实例的61%F1分数,表现出对与培训集交叉口的类别的提高11%的性能。
translated by 谷歌翻译