GPT-3等大型自回归语言模型是几秒钟的学习者,可以在没有微调的情况下执行各种语言任务。虽然已知这些模型能够共同代表许多不同的语言,但他们的培训数据由英语主导,可能限制了它们的交叉概括。在这项工作中,我们在覆盖多种语言的平衡语料库上培训多语言自回归语言模型,并在广泛的任务中研究他们几乎没有零点的学习能力。我们最大的模型,具有75亿参数,在20多种代表语言中,在几种代表语言中,在几种代表性语言中,在几种代表性语言中,在多语言型号推理中表现出可比大小的GPT-3(在0次设置和0次拍摄设置中的绝对精度改善+ 7.4% 4-拍摄设置中的9.4%)和自然语言推理(每次拍摄和4次设置中的每一个+ 5.4%)。在Flores-101机器翻译基准测试中,我们的模型优于GPT-3在182个翻译方向上有32个培训例子,同时超过45个方向的官方监督基线。我们介绍了模型成功和失败的位置的详细分析,特别是它尤其显示在某些任务中实现交叉语境的内容学习,而仍然存在改善表面的鲁棒性和适应没有a的任务的余地自然冻结形式。最后,我们评估我们在仇恨语音检测中以五种语言的仇恨语音检测的模型,并发现它具有与可比大小的GPT-3模型类似的限制。
translated by 谷歌翻译
语言模型是否存在对世界的信念? Dennett(1995年)着名的据称,即使是恒温器也有信仰,认为,信仰只是一种与任何动机国家分离的信息状态。在本文中,我们讨论了何时何时对世界的信仰何时对世界的信念进行检测,并且我们改进了更新模型信念的方法更加真实,重点是基于学习优化器或HyperNetwork的方法。我们的主要贡献包括:(1)评估信仰更新方法的新指标,重点关注信仰的逻辑一致性,(2)培训目标,用于顺序,本地和概括模型更新(渣),从而提高学习优化器的性能(3)介绍信仰图,这是一种新的界面,语言模型显示模型信仰之间的相互依赖性。我们的实验表明,模型只有有限的程度才具有相信的品质,但更新方法都可以修复不正确的模型信念,并大大提高了它们的一致性。虽然现成的优化器令人惊讶地强烈的信念更新基线,但我们所学的优化器可以在更困难的环境中赢得比过去的工作更困难。代码可在https://github.com/peterbhase/slag-belifapdating中获得
translated by 谷歌翻译
State-of-the-art natural language processing systems rely on supervision in the form of annotated data to learn competent models. These models are generally trained on data in a single language (usually English), and cannot be directly used beyond that language. Since collecting data in every language is not realistic, there has been a growing interest in crosslingual language understanding (XLU) and low-resource cross-language transfer. In this work, we construct an evaluation set for XLU by extending the development and test sets of the Multi-Genre Natural Language Inference Corpus (MultiNLI) to 15 languages, including low-resource languages such as Swahili and Urdu. We hope that our dataset, dubbed XNLI, will catalyze research in cross-lingual sentence understanding by providing an informative standard evaluation task. In addition, we provide several baselines for multilingual sentence understanding, including two based on machine translation systems, and two that use parallel data to train aligned multilingual bag-of-words and LSTM encoders. We find that XNLI represents a practical and challenging evaluation suite, and that directly translating the test data yields the best performance among available baselines.
translated by 谷歌翻译
Recent work has shown that fine-tuning large pre-trained language models on a collection of tasks described via instructions, a.k.a. instruction-tuning, improves their zero and few-shot generalization to unseen tasks. However, there is a limited understanding of the performance trade-offs of different decisions made during the instruction-tuning process. These decisions include the scale and diversity of the instruction-tuning benchmark, different task sampling strategies, fine-tuning with and without demonstrations, training using specialized datasets for reasoning and dialogue, and finally, the fine-tuning objectives themselves. In this paper, we characterize the effect of instruction-tuning decisions on downstream task performance when scaling both model and benchmark sizes. To this end, we create OPT-IML Bench: a large benchmark for Instruction Meta-Learning (IML) of 2000 NLP tasks consolidated into task categories from 8 existing benchmarks, and prepare an evaluation framework to measure three types of model generalizations: to tasks from fully held-out categories, to held-out tasks from seen categories, and to held-out instances from seen tasks. Through the lens of this framework, we first present insights about instruction-tuning decisions as applied to OPT-30B and further exploit these insights to train OPT-IML 30B and 175B, which are instruction-tuned versions of OPT. OPT-IML demonstrates all three generalization abilities at both scales on four different evaluation benchmarks with diverse tasks and input formats -- PromptSource, FLAN, Super-NaturalInstructions, and UnifiedSKG. Not only does it significantly outperform OPT on all benchmarks but is also highly competitive with existing models fine-tuned on each specific benchmark. We release OPT-IML at both scales, together with the OPT-IML Bench evaluation framework.
translated by 谷歌翻译
Scaling up language models has led to unprecedented performance gains, but little is understood about how the training dynamics change as models get larger. How do language models of different sizes learn during pre-training? Why do larger language models demonstrate more desirable behaviors? In this paper, we analyze the intermediate training checkpoints of differently sized OPT models (Zhang et al.,2022)--from 125M to 175B parameters--on next-token prediction, sequence-level generation, and downstream tasks. We find that 1) at a given perplexity and independent of model sizes, a similar subset of training tokens see the most significant reduction in loss, with the rest stagnating or showing double-descent behavior; 2) early in training, all models learn to reduce the perplexity of grammatical sequences that contain hallucinations, with small models halting at this suboptimal distribution and larger ones eventually learning to assign these sequences lower probabilities; 3) perplexity is a strong predictor of in-context learning performance on 74 multiple-choice tasks from BIG-Bench, and this holds independent of the model size. Together, these results show that perplexity is more predictive of model behaviors than model size or training computation.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Timely and effective feedback within surgical training plays a critical role in developing the skills required to perform safe and efficient surgery. Feedback from expert surgeons, while especially valuable in this regard, is challenging to acquire due to their typically busy schedules, and may be subject to biases. Formal assessment procedures like OSATS and GEARS attempt to provide objective measures of skill, but remain time-consuming. With advances in machine learning there is an opportunity for fast and objective automated feedback on technical skills. The SimSurgSkill 2021 challenge (hosted as a sub-challenge of EndoVis at MICCAI 2021) aimed to promote and foster work in this endeavor. Using virtual reality (VR) surgical tasks, competitors were tasked with localizing instruments and predicting surgical skill. Here we summarize the winning approaches and how they performed. Using this publicly available dataset and results as a springboard, future work may enable more efficient training of surgeons with advances in surgical data science. The dataset can be accessed from https://console.cloud.google.com/storage/browser/isi-simsurgskill-2021.
translated by 谷歌翻译
A real-world application or setting involves interaction between different modalities (e.g., video, speech, text). In order to process the multimodal information automatically and use it for an end application, Multimodal Representation Learning (MRL) has emerged as an active area of research in recent times. MRL involves learning reliable and robust representations of information from heterogeneous sources and fusing them. However, in practice, the data acquired from different sources are typically noisy. In some extreme cases, a noise of large magnitude can completely alter the semantics of the data leading to inconsistencies in the parallel multimodal data. In this paper, we propose a novel method for multimodal representation learning in a noisy environment via the generalized product of experts technique. In the proposed method, we train a separate network for each modality to assess the credibility of information coming from that modality, and subsequently, the contribution from each modality is dynamically varied while estimating the joint distribution. We evaluate our method on two challenging benchmarks from two diverse domains: multimodal 3D hand-pose estimation and multimodal surgical video segmentation. We attain state-of-the-art performance on both benchmarks. Our extensive quantitative and qualitative evaluations show the advantages of our method compared to previous approaches.
translated by 谷歌翻译
在我们不断变化的气候中,使用模型来评估天气和气候对社会和企业的后续后果的风险及其后续后果至关重要。这种模型的操作在历史上是定制的,并限制在特定的计算基础架构,驱动数据集和预定义的配置上。这些约束通过缩放模型运行并将模型掌握在感兴趣的用户手中。在这里,我们提出了一个基于云的模块化框架,用于部署和操作地理空间模型,最初应用于气候影响。气候冲击建模框架(CIMF)可以以动态和灵活的方式部署模块化工作流程。用户可以以简化的方式指定工作流程组件,然后可以轻松地将这些组件组织成不同的配置,以以不同的方式和不同的尺度评估风险。这还可以使不同的模型(物理模拟或机器学习模型)和工作流程连接以产生合并的风险评估。洪水建模被用作端到端的示例,以证明CIMF的操作。
translated by 谷歌翻译
希望以优先的,有序的方式相结合,因为它允许模块化设计并通过知识传输来促进数据重用。在控制理论中,优先的组合物是通过空空间控制实现的,其中低优先级控制动作被投影到高优先级控制动作的空空间中。这种方法目前无法用于加强学习。我们为增强学习提出了一个新颖的,任务优先的组成框架,其中涉及一个新颖的概念:强化学习政策的冷漠空间。我们的框架有可能促进知识转移和模块化设计,同时大大提高数据效率和增强学习代理的数据重用。此外,我们的方法可以确保高优先级的限制满意度,这使得在机器人技术等安全 - 关键领域中学习有望。与零空间的控制不同,我们的方法允许通过在最初的复合策略构建后在高级政策的无差异空间中在线学习来学习复合任务的全球最佳策略。
translated by 谷歌翻译