动作识别是提高物理康复设备自治的重要组成部分,例如可穿戴机器人外骨骼。现有的人类行动识别算法的重点是成人应用,而不是小儿应用。在本文中,我们介绍了BabyNet,这是一个轻量重量(就可训练的参数而言)的网络结构,以识别婴儿从外体固定摄像机中采取行动的婴儿。我们开发了一个带注释的数据集,其中包括在不受约束的环境中的不同婴儿(例如,在家庭设置等)中的坐姿中执行的各种范围。我们的方法使用带注释的边界框的空间和时间连接来解释和抵消到达的开始,并检测到完整的到达动作。我们评估了我们提出的方法的效率,并将其性能与其他基于学习的网络结构进行比较,以捕获时间相互依存的能力和触及发作和偏移的检测准确性。结果表明,我们的婴儿网络可以在超过其他较大网络的(平均)测试准确性方面达到稳定的性能,因此可以作为基于视频的婴儿获得动作识别的轻量重量数据驱动框架。
translated by 谷歌翻译