森林中自主冬季导航所固有的挑战包括缺乏可靠的全球导航卫星系统(GNSS)信号,低特征对比度,高照明变化和变化环境。这种类型的越野环境是一个极端的情况,自治车可能会在北部地区遇到。因此,了解对自动导航系统对这种恶劣环境的影响非常重要。为此,我们介绍了一个现场报告分析亚曲率区域中的教导和重复导航,同时受到气象条件的大变化。首先,我们描述了系统,它依赖于点云注册来通过北方林地定位移动机器人,同时构建地图。我们通过在教学和重复模式下在自动导航中进行了在实验中评估了该系统。我们展示了密集的植被扰乱了GNSS信号,使其不适合在森林径中导航。此外,我们突出了在森林走廊中使用点云登记的定位相关的不确定性。我们证明它不是雪降水,而是影响我们系统在环境中定位的能力的积雪。最后,我们从我们的实地运动中揭示了一些经验教训和挑战,以支持在冬季条件下更好的实验工作。
translated by 谷歌翻译
我们提出了一个简单的方案,以合并两个神经网络,这些神经网络训练有不同的启动初始化,成一个与原始大小相同的神经网络。我们通过仔细选择每个输入网络的频道来做到这一点。在尝试多个起始种子以避免不幸的种子之后,我们的过程可以用作最终确定步骤。我们还表明,培训两个网络并合并它们会导致性能比在很长一段时间内训练单个网络更好。可用性:https://github.com/fmfi-compbio/neural-network-merging
translated by 谷歌翻译
Web搜索引擎专注于在数百毫秒内提供高度相关的结果。因此,由于其高计算需求,在这种情况下,诸如BERT的预先培训的语言变压器型号难以使用。我们向文档排名问题提供了利用基于BERT的暹罗建筑的实时方法。该模型已经部署在商业搜索引擎中,它将生产性能提高3%以上。为了进一步研究和评估,我们释放Dareczech,一个独特的数据集,一个160万捷克用户查询文档对,手动分配相关性级别。我们还释放了小型电子捷克语,这是一个在大型捷克语中预先培训的电动小语言模型。我们认为,此数据将支持努力,搜索相关性和多语言集中的研究社区。
translated by 谷歌翻译
机器人将机器人的无缝集成到人类环境需要机器人来学习如何使用现有的人类工具。学习工具操纵技能的目前方法主要依赖于目标机器人环境中提供的专家演示,例如,通过手动引导机器人操纵器或通过远程操作。在这项工作中,我们介绍了一种自动化方法,取代了一个专家演示,用YouTube视频来学习工具操纵策略。主要贡献是双重的。首先,我们设计一个对齐过程,使模拟环境与视频中观察到的真实世界。这是作为优化问题,找到刀具轨迹的空间对齐,以最大化环境给出的稀疏目标奖励。其次,我们描述了一种专注于工具的轨迹而不是人类的运动的模仿学习方法。为此,我们将加强学习与优化过程相结合,以基于对准环境中的工具运动来找到控制策略和机器人的放置。我们展示了仿真中的铲子,镰刀和锤子工具的建议方法,并展示了训练有素的政策对真正的弗兰卡·埃米卡熊猫机器人示范的卫生政策的有效性。
translated by 谷歌翻译
在本文中,我们使用支持向量机(SVM)来开发机器学习框架,以发现区分不同反应途径的相空间结构。SVM模型使用来自Hamilton方程的轨迹的数据进行培训,并且即使使用相对较少的轨迹也很好地运行。此外,该框架专门设计用于在系统中最初的先验知识。这使得我们的方法比现有的高维系统和系统的方法更适合,其中集成轨迹昂贵。我们在Chesnavich's Ch $ _4 ^ + $ Hamiltonian上基准测试我们的方法。
translated by 谷歌翻译