云本机应用程序CNAPP(作为分布式系统)是通过通信协议交互的独立组件(微服务)的集合。这引发了CNAPP的抽象架构,作为动态重新配置的无循环定向多图,其中顶点是微服务,并且边缘是协议。用于这种重构的通用机制明显对应于更高级别的函数(功能)。这也意味着MicroService的内部抽象体系结构作为事件触发的无服务器函数的集合(包括实现协议的函数),该函数被动态地组成事件依赖于事件数据流图。同样,这种组合物的通用机制对应于功能和关系的微积分。
translated by 谷歌翻译
数据通常以表格格式存储。几个研究领域(例如,生物医学,断层/欺诈检测),容易出现不平衡的表格数据。由于阶级失衡,对此类数据的监督机器学习通常很困难,从而进一步增加了挑战。合成数据生成,即过采样是一种用于提高分类器性能的常见补救措施。最先进的线性插值方法,例如洛拉斯和普罗拉斯,可用于从少数族裔类的凸空间中生成合成样本,以在这种情况下提高分类器的性能。生成的对抗网络(GAN)是合成样本生成的常见深度学习方法。尽管GAN被广泛用于合成图像生成,但在不平衡分类的情况下,它们在表格数据上的范围没有充分探索。在本文中,我们表明,与线性插值方法相比,现有的深层生成模型的性能较差,该方法从少数族裔类的凸空间中生成合成样本,对于小规模的表格数据集中的分类问题不平衡。我们提出了一个深厚的生成模型,将凸出空间学习和深层生成模型的思想结合在一起。 Convgen了解了少数族类样品的凸组合的系数,因此合成数据与多数类的不同。我们证明,与现有的深层生成模型相比,我们提出的模型Convgen在与现有的线性插值方法相当的同时,改善了此类小数据集的不平衡分类。此外,我们讨论了如何将模型用于一般的综合表格数据生成,甚至超出了数据不平衡的范围,从而提高了凸空间学习的整体适用性。
translated by 谷歌翻译
脑转移性疾病的治疗决策依赖于主要器官位点的知识,目前用活组织检查和组织学进行。在这里,我们开发了一种具有全脑MRI数据的准确非侵入性数字组织学的新型深度学习方法。我们的IRB批准的单网回顾性研究由患者(n = 1,399)组成,提及MRI治疗规划和伽马刀放射牢房超过19年。对比增强的T1加权和T2加权流体减毒的反转恢复脑MRI考试(n = 1,582)被预处理,并输入肿瘤细分,模态转移和主要部位分类的建议深度学习工作流程为五个课程之一(肺,乳腺,黑色素瘤,肾等)。十倍的交叉验证产生的总体AUC为0.947(95%CI:0.938,0.955),肺类AUC,0.899(95%CI:0.884,0.915),乳房类AUC为0.990(95%CI:0.983,0.997) ,黑色素瘤ACAC为0.882(95%CI:0.858,0.906),肾类AUC为0.870(95%CI:0.823,0.918),以及0.885的其他AUC(95%CI:0.843,0.949)。这些数据确定全脑成像特征是判别的,以便准确诊断恶性肿瘤的主要器官位点。我们的端到端深度射出方法具有巨大的分类来自全脑MRI图像的转移性肿瘤类型。进一步的细化可以提供一种无价的临床工具,以加快对精密治疗和改进的结果的原发性癌症现场鉴定。
translated by 谷歌翻译