Referring image segmentation aims to segment the target object described by a given natural language expression. Typically, referring expressions contain complex relationships between the target and its surrounding objects. The main challenge of this task is to understand the visual and linguistic content simultaneously and to find the referred object accurately among all instances in the image. Currently, the most effective way to solve the above problem is to obtain aligned multi-modal features by computing the correlation between visual and linguistic feature modalities under the supervision of the ground-truth mask. However, existing paradigms have difficulty in thoroughly understanding visual and linguistic content due to the inability to perceive information directly about surrounding objects that refer to the target. This prevents them from learning aligned multi-modal features, which leads to inaccurate segmentation. To address this issue, we present a position-aware contrastive alignment network (PCAN) to enhance the alignment of multi-modal features by guiding the interaction between vision and language through prior position information. Our PCAN consists of two modules: 1) Position Aware Module (PAM), which provides position information of all objects related to natural language descriptions, and 2) Contrastive Language Understanding Module (CLUM), which enhances multi-modal alignment by comparing the features of the referred object with those of related objects. Extensive experiments on three benchmarks demonstrate our PCAN performs favorably against the state-of-the-art methods. Our code will be made publicly available.
translated by 谷歌翻译
Video super-resolution (VSR) aiming to reconstruct a high-resolution (HR) video from its low-resolution (LR) counterpart has made tremendous progress in recent years. However, it remains challenging to deploy existing VSR methods to real-world data with complex degradations. On the one hand, there are few well-aligned real-world VSR datasets, especially with large super-resolution scale factors, which limits the development of real-world VSR tasks. On the other hand, alignment algorithms in existing VSR methods perform poorly for real-world videos, leading to unsatisfactory results. As an attempt to address the aforementioned issues, we build a real-world 4 VSR dataset, namely MVSR4$\times$, where low- and high-resolution videos are captured with different focal length lenses of a smartphone, respectively. Moreover, we propose an effective alignment method for real-world VSR, namely EAVSR. EAVSR takes the proposed multi-layer adaptive spatial transform network (MultiAdaSTN) to refine the offsets provided by the pre-trained optical flow estimation network. Experimental results on RealVSR and MVSR4$\times$ datasets show the effectiveness and practicality of our method, and we achieve state-of-the-art performance in real-world VSR task. The dataset and code will be publicly available.
translated by 谷歌翻译
By adopting popular pixel-wise loss, existing methods for defocus deblurring heavily rely on well aligned training image pairs. Although training pairs of ground-truth and blurry images are carefully collected, e.g., DPDD dataset, misalignment is inevitable between training pairs, making existing methods possibly suffer from deformation artifacts. In this paper, we propose a joint deblurring and reblurring learning (JDRL) framework for single image defocus deblurring with misaligned training pairs. Generally, JDRL consists of a deblurring module and a spatially invariant reblurring module, by which deblurred result can be adaptively supervised by ground-truth image to recover sharp textures while maintaining spatial consistency with the blurry image. First, in the deblurring module, a bi-directional optical flow-based deformation is introduced to tolerate spatial misalignment between deblurred and ground-truth images. Second, in the reblurring module, deblurred result is reblurred to be spatially aligned with blurry image, by predicting a set of isotropic blur kernels and weighting maps. Moreover, we establish a new single image defocus deblurring (SDD) dataset, further validating our JDRL and also benefiting future research. Our JDRL can be applied to boost defocus deblurring networks in terms of both quantitative metrics and visual quality on DPDD, RealDOF and our SDD datasets.
translated by 谷歌翻译
Prompt tuning has been employed as an efficient way to adapt large vision-language pre-trained models (e.g. CLIP) to various downstream tasks in data-limited or label-limited settings. Nonetheless, visual data (e.g., images) is by default prerequisite for learning prompts in existing methods. In this work, we advocate that the effectiveness of image-text contrastive learning in aligning the two modalities (for training CLIP) further makes it feasible to treat texts as images for prompt tuning and introduce TaI prompting. In contrast to the visual data, text descriptions are easy to collect, and their class labels can be directly derived. Particularly, we apply TaI prompting to multi-label image recognition, where sentences in the wild serve as alternatives to images for prompt tuning. Moreover, with TaI, double-grained prompt tuning (TaI-DPT) is further presented to extract both coarse-grained and fine-grained embeddings for enhancing the multi-label recognition performance. Experimental results show that our proposed TaI-DPT outperforms zero-shot CLIP by a large margin on multiple benchmarks, e.g., MS-COCO, VOC2007, and NUS-WIDE, while it can be combined with existing methods of prompting from images to improve recognition performance further. Code is released at https://github.com/guozix/TaI-DPT.
translated by 谷歌翻译
卷积神经网络(CNN)通过深度体系结构获得了出色的性能。但是,这些CNN在复杂的场景下通常对图像超分辨率(SR)实现较差的鲁棒性。在本文中,我们通过利用不同类型的结构信息来获得高质量图像,提出了异质组SR CNN(HGSRCNN)。具体而言,HGSRCNN的每个异质组块(HGB)都采用含有对称组卷积块和互补的卷积块的异质体系结构,并以平行方式增强不同渠道的内部和外部关系,以促进富裕类型的较富裕类型的信息, 。为了防止出现获得的冗余功能,以串行方式具有信号增强功能的完善块旨在过滤无用的信息。为了防止原始信息的丢失,多级增强机制指导CNN获得对称架构,以促进HGSRCNN的表达能力。此外,开发了一种平行的向上采样机制来训练盲目的SR模型。广泛的实验表明,在定量和定性分析方面,提出的HGSRCNN获得了出色的SR性能。可以在https://github.com/hellloxiaotian/hgsrcnn上访问代码。
translated by 谷歌翻译
深卷积神经网络(CNN)用于图像通过自动挖掘精确的结构信息进行图像。但是,大多数现有的CNN依赖于扩大设计网络的深度以获得更好的降级性能,这可能会导致训练难度。在本文中,我们通过三个阶段(即动态卷积块(DCB),两个级联的小波变换和增强块(网络)和残留块(RB)(RB)(RB)(RB),提出了带有小波变换(MWDCNN)的多阶段图像。 。 DCB使用动态卷积来动态调整几次卷积的参数,以在降级性能和计算成本之间做出权衡。 Web使用信号处理技术(即小波转换)和判别性学习的组合来抑制噪声,以恢复图像Denoising中更详细的信息。为了进一步删除冗余功能,RB用于完善获得的功能,以改善通过改进残留密度架构来重建清洁图像的特征。实验结果表明,在定量和定性分析方面,提出的MWDCNN优于一些流行的非授权方法。代码可在https://github.com/hellloxiaotian/mwdcnn上找到。
translated by 谷歌翻译
现有的基于匹配的方法通过从像素级内存中检索支持功能执行视频对象细分(VOS),而某些像素可能会遭受内存中缺乏对应关系(即看不见),这不可避免地限制了他们的细分性能。在本文中,我们提出了一个两流网络(TSN)。我们的TSN包含(i)带有常规像素级内存的像素流,以根据其像素级内存检索分割可见像素。 (ii)一个看不见的像素的实例流,其中对实例的整体理解是在动态分割头上以基于目标实例的特征进行条件的。 (iii)一个像素划分模块生成路由图,将两个流的输出嵌入在一起融合在一起。紧凑的实例流有效地提高了看不见的像素的分割精度,同时将两个流与自适应路由图融合在一起,导致整体性能提升。通过广泛的实验,我们证明了我们提出的TSN的有效性,并且还报告了2018年YouTube-VOS的最先进性能为86.1%,在Davis-2017验证案例中为87.5%。
translated by 谷歌翻译
弱监督对象检测(WSOD)旨在仅训练需要图像级注释的对象检测器。最近,一些作品设法选择了从训练有素的WSOD网络生成的准确框,以监督半监督的检测框架以提高性能。但是,这些方法只需根据图像级标准将设置的训练分为标记和未标记的集合,从而选择了足够的错误标记或错误的局部盒子预测作为伪基真正的真实性,从而产生了次优的检测性能解决方案。为了克服这个问题,我们提出了一个新颖的WSOD框架,其新范式从弱监督到嘈杂的监督(W2N)。通常,通过训练有素的WSOD网络产生的给定的伪基真实性,我们提出了一种两模块迭代训练算法来完善伪标签并逐步监督更好的对象探测器。在定位适应模块中,我们提出正规化损失,以减少原始伪基真实性中判别零件的比例,从而获得更好的伪基真实性,以进行进一步的训练。在半监督的模块中,我们提出了两个任务实例级拆分方法,以选择用于训练半监督检测器的高质量标签。不同基准测试的实验结果验证了W2N的有效性,我们的W2N优于所有现有的纯WSOD方法和转移学习方法。我们的代码可在https://github.com/1170300714/w2n_wsod上公开获得。
translated by 谷歌翻译
由于简单但有效的训练机制和出色的图像产生质量,生成的对抗网络(GAN)引起了极大的关注。具有生成照片现实的高分辨率(例如$ 1024 \ times1024 $)的能力,最近的GAN模型已大大缩小了生成的图像与真实图像之间的差距。因此,许多最近的作品表明,通过利用良好的潜在空间和博学的gan先验来利用预先训练的GAN模型的新兴兴趣。在本文中,我们简要回顾了从三个方面利用预先培训的大规模GAN模型的最新进展,即1)大规模生成对抗网络的培训,2)探索和理解预训练的GAN模型,以及预先培训的GAN模型,以及3)利用这些模型进行后续任务,例如图像恢复和编辑。有关相关方法和存储库的更多信息,请访问https://github.com/csmliu/pretretaining-gans。
translated by 谷歌翻译
一击生成域Adaption旨在仅使用一个参考图像将一个预训练的发电机传输到一个新域中。但是,适用的生成器(i)要生成从预训练的生成器继承的多种图像,而(ii)(ii)忠实地获取参考图像的特定领域特定属性和样式,这仍然非常具有挑战性。在本文中,我们提出了一种新颖的单发性生成域适应方法,即Difa,用于多元化和忠实的适应。对于全球级别的适应,我们利用参考图像的剪辑嵌入与源图像的平均嵌入之间的差异来限制目标发生器。对于本地级别的适应,我们引入了一个细心的样式损失,该损失将每个适应图像的中间令牌与参考图像的相应令牌保持一致。为了促进多样化的生成,引入了选择性的跨域一致性,以选择和保留域共享属性,以编辑潜在的$ \ MATHCAL {W}+$ $空间来继承预训练的生成器的多样性。广泛的实验表明,我们的方法在定量和定性上都优于最先进的实验,尤其是对于大域间隙的情况。此外,我们的DIFA可以轻松地扩展到零击生成域的适应性,并具有吸引力的结果。代码可从https://github.com/1170300521/difa获得。
translated by 谷歌翻译