我们介绍了在Neurips'22接受的Chalearn Meta学习系列中的新挑战的设计和基线结果,重点是“跨域”元学习。元学习旨在利用从以前的任务中获得的经验,以有效地解决新任务(即具有更好的性能,较少的培训数据和/或适度的计算资源)。尽管该系列中的先前挑战集中在域内几乎没有学习问题,但目的是有效地学习n-way K-shot任务(即N级培训示例的N班级分类问题),这项竞赛挑战了参与者的解决方案。从各种领域(医疗保健,生态学,生物学,制造业等)提出的“任何通道”和“任何镜头”问题,他们是为了人道主义和社会影响而被选为。为此,我们创建了Meta-Album,这是来自10个域的40个图像分类数据集的元数据,从中,我们从中以任何数量的“方式”(在2-20范围内)和任何数量的“镜头”来解释任务”(在1-20范围内)。竞争是由代码提交的,在Codalab挑战平台上进行了完全盲目测试。获奖者的代码将是开源的,从而使自动化机器学习解决方案的部署可以在几个域中进行几次图像分类。
translated by 谷歌翻译
图神经网络(GNN)在图形分类和多样化的下游现实世界应用方面取得了巨大成功。尽管他们成功了,但现有的方法要么仅限于结构攻击,要么仅限于本地信息。这要求在图形分类上建立更一般的攻击框架,由于使用全球图表级信息生成本地节点级的对抗示例的复杂性,因此面临重大挑战。为了解决这个“全局到本地”问题,我们提出了一个通用框架CAMA,以通过层次样式操纵图形结构和节点特征来生成对抗性示例。具体而言,我们利用Graph类激活映射及其变体来产​​生与图形分类任务相对应的节点级的重要性。然后,通过算法的启发式设计,我们可以借助节点级别和子图级的重要性在不明显的扰动预算下执行功能和结构攻击。在六个现实世界基准上攻击四个最先进的图形分类模型的实验验证了我们框架的灵活性和有效性。
translated by 谷歌翻译
Graph神经体系结构搜索(Graphnas)最近引起了学术界和工业的关注。但是,两个主要挑战严重阻碍了对石墨的进一步研究。首先,由于实验环境没有共识,因此不同研究论文中的经验结果通常是不可比服的,甚至不可再现,从而导致不公平的比较。其次,石墨通常需要进行广泛的计算,这使得研究人员无法访问大规模计算,这使其高效且无法访问。为了解决这些挑战,我们提出了NAS Bench-Graph,这是一种量身定制的基准测试,该基准支持统一,可重现和有效的Gragennas评估。具体而言,我们构建了一个统一,表现力但紧凑的搜索空间,涵盖26,206个独特的图形神经网络(GNN)体系结构,并提出了原则评估协议。为了避免不必要的重复培训,我们已经在九个代表性的图形数据集上培训和评估了所有这些架构,记录了详细的指标,包括火车,验证和测试性能,每个时期,延迟,参数数量等。基准测试,可以通过查找表直接获得GNN体系结构的性能,而无需任何进一步的计算,这可以实现公平,完全可重现和有效的比较。为了证明其使用情况,我们对我们提出的NAS基础图表进行了深入的分析,从而揭示了一些有关Graphnas的有趣发现。我们还展示了如何轻松地与诸如autogl和nni之类的诸如AutoGL和NNI之类的Graphnas开放库兼容。据我们所知,我们的工作是图形神经架构搜索的第一个基准。
translated by 谷歌翻译
聚类是一项基本的机器学习任务,在文献中已广泛研究。经典聚类方法遵循以下假设:数据通过各种表示的学习技术表示为矢量化形式的特征。随着数据变得越来越复杂和复杂,浅(传统)聚类方法无法再处理高维数据类型。随着深度学习的巨大成功,尤其是深度无监督的学习,在过去的十年中,已经提出了许多具有深层建筑的代表性学习技术。最近,已经提出了深层聚类的概念,即共同优化表示的学习和聚类,因此引起了社区的日益关注。深度学习在聚类中的巨大成功,最基本的机器学习任务之一以及该方向的最新进展的巨大成功所激发。 - 艺术方法。我们总结了深度聚类的基本组成部分,并通过设计深度表示学习和聚类之间的交互方式对现有方法进行了分类。此外,该调查还提供了流行的基准数据集,评估指标和开源实现,以清楚地说明各种实验设置。最后但并非最不重要的一点是,我们讨论了深度聚类的实际应用,并提出了应有的挑战性主题,应将进一步的研究作为未来的方向。
translated by 谷歌翻译
Graph machine learning has been extensively studied in both academia and industry. Although booming with a vast number of emerging methods and techniques, most of the literature is built on the in-distribution hypothesis, i.e., testing and training graph data are identically distributed. However, this in-distribution hypothesis can hardly be satisfied in many real-world graph scenarios where the model performance substantially degrades when there exist distribution shifts between testing and training graph data. To solve this critical problem, out-of-distribution (OOD) generalization on graphs, which goes beyond the in-distribution hypothesis, has made great progress and attracted ever-increasing attention from the research community. In this paper, we comprehensively survey OOD generalization on graphs and present a detailed review of recent advances in this area. First, we provide a formal problem definition of OOD generalization on graphs. Second, we categorize existing methods into three classes from conceptually different perspectives, i.e., data, model, and learning strategy, based on their positions in the graph machine learning pipeline, followed by detailed discussions for each category. We also review the theories related to OOD generalization on graphs and introduce the commonly used graph datasets for thorough evaluations. Finally, we share our insights on future research directions. This paper is the first systematic and comprehensive review of OOD generalization on graphs, to the best of our knowledge.
translated by 谷歌翻译
自动音频标题(AAC)旨在使用自然语言描述具有标题的音频数据。大多数现有的AAC方法采用编码器 - 解码器结构,其中基于注意的机制是解码器(例如,变压器解码器)中的受欢迎选择,用于预测来自音频特征的标题。这种基于注意的解码器可以从音频特征捕获全局信息,然而,它们在提取本地信息的能力可以是有限的,这可能导致所生成的标题中的质量下降。在本文中,我们介绍了一种具有无注意解码器的AAC方法,其中基于Pann的编码器用于音频特征提取,并且设计了无注意的解码器以引入本地信息。所提出的方法使得能够从音频信号中有效地使用全局和本地信息。实验表明,我们的方法在DCASE 2021挑战的任务6中具有基于标准的解码器的最先进的方法。
translated by 谷歌翻译
传统的机器学习(ML)严重依赖于机器学习专家的手动设计,以决定学习任务,数据,模型,优化算法和评估指标,以及劳动密集型,耗时,不能像人类那样自主学习。在教育科学,自我导向的学习中,人类学习者在不需要动手指导的情况下选择学习任务和材料,已经显示出比被动教师引导的学习更有效。灵感来自自我导向的人类学习的概念,我们介绍了自我导向机器学习(SDML)的主要概念,并为SDML提出了一个框架。具体而言,我们设计SDML作为自我意识引导的自我指导的学习过程,包括内部意识和外部意识。我们提出的SDML进程从自我任务选择,自我数据选择,自我模型选择,自我优化策略选择和自我意识中选择的自我认识,没有人为指导。同时,SDML过程的学习性能是进一步提高自我意识的反馈。我们为基于多级优化的SDML提出了一种数学制定。此外,我们将案例研究与SDML的潜在应用一起,随后讨论未来的研究方向。我们希望SDML能够使机器能够进行人类的自我导向学习,并为人为一般情报提供新的视角。
translated by 谷歌翻译
学术界和工业广泛研究了图形机器学习。然而,作为图表学习繁荣的文献,具有大量的新兴方法和技术,它越来越难以手动设计用于不同的图形相关任务的最佳机器学习算法。为了解决挑战,自动化图形机器学习,目的是在没有手动设计的不同图表任务/数据中发现最好的图形任务/数据的最佳超参数和神经架构配置,正在增加研究界的越来越多的关注。在本文中,我们广泛地讨论了自动化图形机方法,涵盖了用于图形机学习的超参数优化(HPO)和神经架构搜索(NAS)。我们简要概述了专为Traph Machine学习或自动化机器学习而设计的现有库,进一步深入介绍AutoGL,我们的专用和世界上第一个用于自动图形机器学习的开放源库。最后但并非最不重要的是,我们分享了对自动图形机学习的未来研究方向的见解。本文是对自动图形机学习的方法,图书馆以及方向的第一个系统和全面讨论。
translated by 谷歌翻译
几何深度学习,即设计神经网络以处理诸如点云和图形的无处不在的几何数据,在过去十年中取得了巨大的成功。一个关键的归纳偏差是该模型可以维持朝向各种变换的不变性,例如翻译,旋转和缩放。现有的图形神经网络(GNN)方法只能维持置换不变性,不能保证与其他转换的不变性。除了GNN,其他作品设计复杂的变换不变层,这些层是计算昂贵且难以扩展的。为了解决这个问题,我们重新审视为什么在处理几何数据时,现有的神经网络无法维持转换不变性。我们的研究结果表明,变换不变和距离保持距离初始表示足以实现变换不变性,而不是需要复杂的神经层设计。通过这些发现,我们提出了转型不变神经网络(TINVNN),是几何数据的直接和一般框架。具体地,我们通过在将表示形式馈送到神经网络之前来实现通过修改多维缩放来实现转换不变和距离保留初始点表示。我们证明Tinvnn可以严格保证转型不变性,一般而灵活,足以与现有的神经网络相结合。广泛的实验结果对点云分析和组合优化展示了我们提出的方法的有效性和一般适用性。基于实验结果,我们倡导Tinvnn应该被视为新的起点和基本基准,以进一步研究转型不变几何深度学习。
translated by 谷歌翻译
图表神经网络(GNNS)在测试和训练图数据来自相同分布时取得了令人印象深刻的性能。然而,现有的GNN缺乏分发的泛化能力,使得它们的性能在测试和训练图数据之间存在分布时显着降低。为了解决这个问题,在这项工作中,我们提出了一个用于在具有训练图的不同分布的看不见的分布的看不见的令人满意的令人满意的令人满意的通用图形神经网络(OOD-GNN)。我们所提出的OOD-GNN采用新颖的非线性图形表示去序方法,利用随机傅里叶特征,这鼓励模型通过迭代优化样本图权重和图形编码器来消除相关和无关的图表表示之间的统计依赖性。我们进一步设计了一个全局重量估计器,以学习训练图的权重,使得图形表示中的变量被迫独立。学习权重有助于图形编码器摆脱虚假相关性,并且反过来,更集中学习鉴别图形表示与地面真理标签之间的真实连接。我们进行广泛的实验,以验证两个合成和12个现实世界数据集的分发外概括能力,分配换档。结果表明,我们所提出的OOD-GNN显着优于最先进的基线。
translated by 谷歌翻译