Knowledge distillation (KD) has been actively studied for image classification tasks in deep learning, aiming to improve the performance of a student based on the knowledge from a teacher. However, applying KD in image regression with a scalar response variable has been rarely studied, and there exists no KD method applicable to both classification and regression tasks yet. Moreover, existing KD methods often require a practitioner to carefully select or adjust the teacher and student architectures, making these methods less flexible in practice. To address the above problems in a unified way, we propose a comprehensive KD framework based on cGANs, termed cGAN-KD. Fundamentally different from existing KD methods, cGAN-KD distills and transfers knowledge from a teacher model to a student model via cGAN-generated samples. This novel mechanism makes cGAN-KD suitable for both classification and regression tasks, compatible with other KD methods, and insensitive to the teacher and student architectures. An error bound for a student model trained in the cGAN-KD framework is derived in this work, providing a theory for why cGAN-KD is effective as well as guiding the practical implementation of cGAN-KD. Extensive experiments on CIFAR-100 and ImageNet-100 show that we can combine state of the art KD methods with the cGAN-KD framework to yield a new state of the art. Moreover, experiments on Steering Angle and UTKFace demonstrate the effectiveness of cGAN-KD in image regression tasks, where existing KD methods are inapplicable.
translated by 谷歌翻译
最近,已经积极研究了从无条件生成的对抗网络(GANS)产生的来自无条件生成的对抗网络(GANS)来改善整体图像质量的子采样或精炼图像。不幸的是,这些方法通常观察到处理条件GAN(CGANS) - 在类(AKA类条件GANS)或连续变量(AKA连续CGANs或CCGANs)上调节条件的效率较低或效率低。在这项工作中,我们引入了一个有效且有效的回顾性方案,命名为条件密度比引导抑制采样(CDR-RS),以从CGANS采样高质量的图像。具体地,我们首先制定一种新的条件密度比估计方法,称为CDRE-F-CSP,通过提出条件的SOFTPLUS(CSP)损耗和改进的特征提取机制。然后,我们导出了在CSP丢失训练的密度比模型的误差。最后,我们在其估计的条件密度比方面接受或拒绝假图像。还开发了一种过滤方案以增加假图像的标签一致性,而不会在从CCGANs采样时失去多样性。我们在五个基准数据集中广泛地测试CDR-RS的有效性和效率在各种条件的GANS和CCGANS中取样。当从类条件的GAN进行采样时,CDR-RS在有效性方面,CDR-RS通过大型余量(除DRE-F-SP + RS除外)优于现代最先进的方法。尽管CDR-RS的有效性通常与DRE-F-SP + RS的有效性相当,但CDR-RS基本上更有效。当从CCGANS取样时,在有效性和效率方面,CDR-RS的优越性甚至更加明显。值得注意的是,随着合理的计算资源的消耗,CDR-RS可以大大减少标签分数而不降低CCGAN生成的图像的多样性,而其他方法通常需要交易大量的多样性以略微改善标签分数。
translated by 谷歌翻译
This work proposes the continuous conditional generative adversarial network (CcGAN), the first generative model for image generation conditional on continuous, scalar conditions (termed regression labels). Existing conditional GANs (cGANs) are mainly designed for categorical conditions (eg, class labels); conditioning on regression labels is mathematically distinct and raises two fundamental problems:(P1) Since there may be very few (even zero) real images for some regression labels, minimizing existing empirical versions of cGAN losses (aka empirical cGAN losses) often fails in practice;(P2) Since regression labels are scalar and infinitely many, conventional label input methods are not applicable. The proposed CcGAN solves the above problems, respectively, by (S1) reformulating existing empirical cGAN losses to be appropriate for the continuous scenario; and (S2) proposing a naive label input (NLI) method and an improved label input (ILI) method to incorporate regression labels into the generator and the discriminator. The reformulation in (S1) leads to two novel empirical discriminator losses, termed the hard vicinal discriminator loss (HVDL) and the soft vicinal discriminator loss (SVDL) respectively, and a novel empirical generator loss. The error bounds of a discriminator trained with HVDL and SVDL are derived under mild assumptions in this work. Two new benchmark datasets (RC-49 and Cell-200) and a novel evaluation metric (Sliding Fr\'echet Inception Distance) are also proposed for this continuous scenario. Our experiments on the Circular 2-D Gaussians, RC-49, UTKFace, Cell-200, and Steering Angle datasets show that CcGAN is able to generate diverse, high-quality samples from the image distribution conditional on a given regression label. Moreover, in these experiments, CcGAN substantially outperforms cGAN both visually and quantitatively.
translated by 谷歌翻译
Text-guided image editing can have a transformative impact in supporting creative applications. A key challenge is to generate edits that are faithful to input text prompts, while consistent with input images. We present Imagen Editor, a cascaded diffusion model built, by fine-tuning Imagen on text-guided image inpainting. Imagen Editor's edits are faithful to the text prompts, which is accomplished by using object detectors to propose inpainting masks during training. In addition, Imagen Editor captures fine details in the input image by conditioning the cascaded pipeline on the original high resolution image. To improve qualitative and quantitative evaluation, we introduce EditBench, a systematic benchmark for text-guided image inpainting. EditBench evaluates inpainting edits on natural and generated images exploring objects, attributes, and scenes. Through extensive human evaluation on EditBench, we find that object-masking during training leads to across-the-board improvements in text-image alignment -- such that Imagen Editor is preferred over DALL-E 2 and Stable Diffusion -- and, as a cohort, these models are better at object-rendering than text-rendering, and handle material/color/size attributes better than count/shape attributes.
translated by 谷歌翻译
Exploring the climate impacts of various anthropogenic emissions scenarios is key to making informed decisions for climate change mitigation and adaptation. State-of-the-art Earth system models can provide detailed insight into these impacts, but have a large associated computational cost on a per-scenario basis. This large computational burden has driven recent interest in developing cheap machine learning models for the task of climate model emulation. In this manuscript, we explore the efficacy of randomly wired neural networks for this task. We describe how they can be constructed and compare them to their standard feedforward counterparts using the ClimateBench dataset. Specifically, we replace the serially connected dense layers in multilayer perceptrons, convolutional neural networks, and convolutional long short-term memory networks with randomly wired dense layers and assess the impact on model performance for models with 1 million and 10 million parameters. We find average performance improvements of 4.2% across model complexities and prediction tasks, with substantial performance improvements of up to 16.4% in some cases. Furthermore, we find no significant difference in prediction speed between networks with standard feedforward dense layers and those with randomly wired layers. These findings indicate that randomly wired neural networks may be suitable direct replacements for traditional dense layers in many standard models.
translated by 谷歌翻译
Objective: We aim to develop an open-source natural language processing (NLP) package, SODA (i.e., SOcial DeterminAnts), with pre-trained transformer models to extract social determinants of health (SDoH) for cancer patients, examine the generalizability of SODA to a new disease domain (i.e., opioid use), and evaluate the extraction rate of SDoH using cancer populations. Methods: We identified SDoH categories and attributes and developed an SDoH corpus using clinical notes from a general cancer cohort. We compared four transformer-based NLP models to extract SDoH, examined the generalizability of NLP models to a cohort of patients prescribed with opioids, and explored customization strategies to improve performance. We applied the best NLP model to extract 19 categories of SDoH from the breast (n=7,971), lung (n=11,804), and colorectal cancer (n=6,240) cohorts. Results and Conclusion: We developed a corpus of 629 cancer patients notes with annotations of 13,193 SDoH concepts/attributes from 19 categories of SDoH. The Bidirectional Encoder Representations from Transformers (BERT) model achieved the best strict/lenient F1 scores of 0.9216 and 0.9441 for SDoH concept extraction, 0.9617 and 0.9626 for linking attributes to SDoH concepts. Fine-tuning the NLP models using new annotations from opioid use patients improved the strict/lenient F1 scores from 0.8172/0.8502 to 0.8312/0.8679. The extraction rates among 19 categories of SDoH varied greatly, where 10 SDoH could be extracted from >70% of cancer patients, but 9 SDoH had a low extraction rate (<70% of cancer patients). The SODA package with pre-trained transformer models is publicly available at https://github.com/uf-hobiinformatics-lab/SDoH_SODA.
translated by 谷歌翻译
我们提出了连续表示的时间扩展变化,我们称其为t-SR。 T-SR通过在原始动作重复序列上构造后继表示,捕获了时间扩展动作的预期状态过渡动力学。这种时间抽象的这种形式不能学习相关任务结构的自上而下的层次结构,而是对耦合动作和动作重复的自下而上的组成。这减少了在没有学习层次政策的情况下控制中所需的决策数量。因此,T-SR直接考虑了时间扩展的动作序列的时间范围,而无需预定义或域特异性选项。我们表明,在具有动态奖励结构的环境中,T-SR能够利用后继表示的灵活性和时间扩展的动作提供的抽象。因此,在一系列稀疏的网格世界环境中,T-SR最佳地适应策略远比基于可比的无模型的强化学习方法快得多。我们还表明,T-SR学到的解决这些任务的方式要求学习的策略的始终如一的频率比非临时扩展的策略少。
translated by 谷歌翻译
相干显微镜技术提供了跨科学和技术领域的材料的无与伦比的多尺度视图,从结构材料到量子设备,从综合电路到生物细胞。在构造更明亮的来源和高速探测器的驱动下,连贯的X射线显微镜方法(如Ptychography)有望彻底改变纳米级材料的特征。但是,相关的数据和计算需求显着增加意味着,常规方法不再足以从高速相干成像实验实时恢复样品图像。在这里,我们演示了一个工作流程,该工作流利用边缘的人工智能和高性能计算,以实现直接从检测器直接从检测器流出的X射线ptychography数据实时反演。拟议的AI支持的工作流程消除了传统的Ptychography施加的采样约束,从而使用比传统方法所需的数据较少的数据级允许低剂量成像。
translated by 谷歌翻译
通用数据模型解决了标准化电子健康记录(EHR)数据的许多挑战,但无法将其集成深度表型所需的资源。开放的生物学和生物医学本体论(OBO)铸造本体论提供了可用于生物学知识的语义计算表示,并能够整合多种生物医学数据。但是,将EHR数据映射到OBO Foundry本体论需要大量的手动策展和域专业知识。我们介绍了一个框架,用于将观察性医学成果合作伙伴关系(OMOP)标准词汇介绍给OBO铸造本体。使用此框架,我们制作了92,367条条件,8,615种药物成分和10,673个测量结果的映射。域专家验证了映射准确性,并且在24家医院进行检查时,映射覆盖了99%的条件和药物成分和68%的测量结果。最后,我们证明OMOP2OBO映射可以帮助系统地识别可能受益于基因检测的未诊断罕见病患者。
translated by 谷歌翻译
辅助抗菌处方的人工智能(AI)提出了重大的道德问题。利用与AI驱动的系统一起利用道德框架,同时考虑特定的复杂性,可以支持道德决策以应对抗菌抗性。
translated by 谷歌翻译