这项工作结合了有关预先训练模型编码的对话历史的信息,其含义表示当前系统话语,以实现面向任务对话中的语境语言生成。我们利用预先训练的多上下文转换模型进行从头开始培训的模型中的上下文表示;并利用从预训练的GPT-2调整的模型中的上下文生成的立即使用前面的用户话语。与多种数据集的两个实验表明,通过预先训练的模型编码的上下文信息可提高自动指标和人类评估中的响应生成的性能。我们所呈现的上下文发电机使得更高种类的响应能够更好地适应正在进行的对话。分析上下文大小显示,较长的上下文不会自动导致更好的性能,但是前面的用户话语的直接对上下文生成起着重要作用。此外,我们还提出了一种基于GPT的生成模型的重新排名。实验表明,RE-Ranker选择的响应对自动度量有重大改进。
translated by 谷歌翻译
本文介绍了一种自动评估对话系统中自然语言生成的自然。虽然这项任务以前通过昂贵且耗时的人类劳动力提供,但我们提出了这种新的生成语言自然评估的新任务。通过微调BERT模型,我们所提出的自然评估方法显示了稳健的结果,优于基线:支持向量机,双向LSTM和BLEurt。此外,通过从质量和信息性语言知识转移学习,改善了自然模型的训练速度和评估性能。
translated by 谷歌翻译
Markowitz mean-variance portfolios with sample mean and covariance as input parameters feature numerous issues in practice. They perform poorly out of sample due to estimation error, they experience extreme weights together with high sensitivity to change in input parameters. The heavy-tail characteristics of financial time series are in fact the cause for these erratic fluctuations of weights that consequently create substantial transaction costs. In robustifying the weights we present a toolbox for stabilizing costs and weights for global minimum Markowitz portfolios. Utilizing a projected gradient descent (PGD) technique, we avoid the estimation and inversion of the covariance operator as a whole and concentrate on robust estimation of the gradient descent increment. Using modern tools of robust statistics we construct a computationally efficient estimator with almost Gaussian properties based on median-of-means uniformly over weights. This robustified Markowitz approach is confirmed by empirical studies on equity markets. We demonstrate that robustified portfolios reach the lowest turnover compared to shrinkage-based and constrained portfolios while preserving or slightly improving out-of-sample performance.
translated by 谷歌翻译
A critical step in sharing semantic content online is to map the structural data source to a public domain ontology. This problem is denoted as the Relational-To-Ontology Mapping Problem (Rel2Onto). A huge effort and expertise are required for manually modeling the semantics of data. Therefore, an automatic approach for learning the semantics of a data source is desirable. Most of the existing work studies the semantic annotation of source attributes. However, although critical, the research for automatically inferring the relationships between attributes is very limited. In this paper, we propose a novel method for semantically annotating structured data sources using machine learning, graph matching and modified frequent subgraph mining to amend the candidate model. In our work, Knowledge graph is used as prior knowledge. Our evaluation shows that our approach outperforms two state-of-the-art solutions in tricky cases where only a few semantic models are known.
translated by 谷歌翻译
Using robots in educational contexts has already shown to be beneficial for a student's learning and social behaviour. For levitating them to the next level of providing more effective and human-like tutoring, the ability to adapt to the user and to express proactivity is fundamental. By acting proactively, intelligent robotic tutors anticipate possible situations where problems for the student may arise and act in advance for preventing negative outcomes. Still, the decisions of when and how to behave proactively are open questions. Therefore, this paper deals with the investigation of how the student's cognitive-affective states can be used by a robotic tutor for triggering proactive tutoring dialogue. In doing so, it is aimed to improve the learning experience. For this reason, a concept learning task scenario was observed where a robotic assistant proactively helped when negative user states were detected. In a learning task, the user's states of frustration and confusion were deemed to have negative effects on the outcome of the task and were used to trigger proactive behaviour. In an empirical user study with 40 undergraduate and doctoral students, we studied whether the initiation of proactive behaviour after the detection of signs of confusion and frustration improves the student's concentration and trust in the agent. Additionally, we investigated which level of proactive dialogue is useful for promoting the student's concentration and trust. The results show that high proactive behaviour harms trust, especially when triggered during negative cognitive-affective states but contributes to keeping the student focused on the task when triggered in these states. Based on our study results, we further discuss future steps for improving the proactive assistance of robotic tutoring systems.
translated by 谷歌翻译
We present Mu$^{2}$SLAM, a multilingual sequence-to-sequence model pre-trained jointly on unlabeled speech, unlabeled text and supervised data spanning Automatic Speech Recognition (ASR), Automatic Speech Translation (AST) and Machine Translation (MT), in over 100 languages. By leveraging a quantized representation of speech as a target, Mu$^{2}$SLAM trains the speech-text models with a sequence-to-sequence masked denoising objective similar to T5 on the decoder and a masked language modeling (MLM) objective on the encoder, for both unlabeled speech and text, while utilizing the supervised tasks to improve cross-lingual and cross-modal representation alignment within the model. On CoVoST AST, Mu$^{2}$SLAM establishes a new state-of-the-art for models trained on public datasets, improving on xx-en translation over the previous best by 1.9 BLEU points and on en-xx translation by 1.1 BLEU points. On Voxpopuli ASR, our model matches the performance of an mSLAM model fine-tuned with an RNN-T decoder, despite using a relatively weaker sequence-to-sequence architecture. On text understanding tasks, our model improves by more than 6\% over mSLAM on XNLI, getting closer to the performance of mT5 models of comparable capacity on XNLI and TydiQA, paving the way towards a single model for all speech and text understanding tasks.
translated by 谷歌翻译
The polynomial kernels are widely used in machine learning and they are one of the default choices to develop kernel-based classification and regression models. However, they are rarely used and considered in numerical analysis due to their lack of strict positive definiteness. In particular they do not enjoy the usual property of unisolvency for arbitrary point sets, which is one of the key properties used to build kernel-based interpolation methods. This paper is devoted to establish some initial results for the study of these kernels, and their related interpolation algorithms, in the context of approximation theory. We will first prove necessary and sufficient conditions on point sets which guarantee the existence and uniqueness of an interpolant. We will then study the Reproducing Kernel Hilbert Spaces (or native spaces) of these kernels and their norms, and provide inclusion relations between spaces corresponding to different kernel parameters. With these spaces at hand, it will be further possible to derive generic error estimates which apply to sufficiently smooth functions, thus escaping the native space. Finally, we will show how to employ an efficient stable algorithm to these kernels to obtain accurate interpolants, and we will test them in some numerical experiment. After this analysis several computational and theoretical aspects remain open, and we will outline possible further research directions in a concluding section. This work builds some bridges between kernel and polynomial interpolation, two topics to which the authors, to different extents, have been introduced under the supervision or through the work of Stefano De Marchi. For this reason, they wish to dedicate this work to him in the occasion of his 60th birthday.
translated by 谷歌翻译
Self-supervised image denoising techniques emerged as convenient methods that allow training denoising models without requiring ground-truth noise-free data. Existing methods usually optimize loss metrics that are calculated from multiple noisy realizations of similar images, e.g., from neighboring tomographic slices. However, those approaches fail to utilize the multiple contrasts that are routinely acquired in medical imaging modalities like MRI or dual-energy CT. In this work, we propose the new self-supervised training scheme Noise2Contrast that combines information from multiple measured image contrasts to train a denoising model. We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss. The trained denoising operator achieves convincing quantitative and qualitative results, outperforming state-of-the-art self-supervised methods by 4.7-11.0%/4.8-7.3% (PSNR/SSIM) on brain MRI data and by 43.6-50.5%/57.1-77.1% (PSNR/SSIM) on dual-energy CT X-ray microscopy data with respect to the noisy baseline. Our experiments on different real measured data sets indicate that Noise2Contrast training generalizes to other multi-contrast imaging modalities.
translated by 谷歌翻译
In this work, we demonstrate the offline FPGA realization of both recurrent and feedforward neural network (NN)-based equalizers for nonlinearity compensation in coherent optical transmission systems. First, we present a realization pipeline showing the conversion of the models from Python libraries to the FPGA chip synthesis and implementation. Then, we review the main alternatives for the hardware implementation of nonlinear activation functions. The main results are divided into three parts: a performance comparison, an analysis of how activation functions are implemented, and a report on the complexity of the hardware. The performance in Q-factor is presented for the cases of bidirectional long-short-term memory coupled with convolutional NN (biLSTM + CNN) equalizer, CNN equalizer, and standard 1-StpS digital back-propagation (DBP) for the simulation and experiment propagation of a single channel dual-polarization (SC-DP) 16QAM at 34 GBd along 17x70km of LEAF. The biLSTM+CNN equalizer provides a similar result to DBP and a 1.7 dB Q-factor gain compared with the chromatic dispersion compensation baseline in the experimental dataset. After that, we assess the Q-factor and the impact of hardware utilization when approximating the activation functions of NN using Taylor series, piecewise linear, and look-up table (LUT) approximations. We also show how to mitigate the approximation errors with extra training and provide some insights into possible gradient problems in the LUT approximation. Finally, to evaluate the complexity of hardware implementation to achieve 400G throughput, fixed-point NN-based equalizers with approximated activation functions are developed and implemented in an FPGA.
translated by 谷歌翻译
Incorporating computed tomography (CT) reconstruction operators into differentiable pipelines has proven beneficial in many applications. Such approaches usually focus on the projection data and keep the acquisition geometry fixed. However, precise knowledge of the acquisition geometry is essential for high quality reconstruction results. In this paper, the differentiable formulation of fan-beam CT reconstruction is extended to the acquisition geometry. This allows to propagate gradient information from a loss function on the reconstructed image into the geometry parameters. As a proof-of-concept experiment, this idea is applied to rigid motion compensation. The cost function is parameterized by a trained neural network which regresses an image quality metric from the motion affected reconstruction alone. Using the proposed method, we are the first to optimize such an autofocus-inspired algorithm based on analytical gradients. The algorithm achieves a reduction in MSE by 35.5 % and an improvement in SSIM by 12.6 % over the motion affected reconstruction. Next to motion compensation, we see further use cases of our differentiable method for scanner calibration or hybrid techniques employing deep models.
translated by 谷歌翻译