最近,基于深度神经网络(DNN)的药物 - 目标相互作用(DTI)模型以高精度突出显示,具有实惠的计算成本。然而,模型在硅药物发现的实践中仍然是一个具有挑战性的问题。我们提出了两项​​关键策略,以提高DTI模型的概括。首先是通过用神经网络参数化的物理通知方程来预测原子原子对相互作用,并提供蛋白质 - 配体复合物作为其总和的总结合亲和力。通过增强更广泛的绑定姿势和配体来培训数据,我们进一步改善了模型泛化。我们验证了我们的模型,PIGNET,在评分职能(CASF)2016的比较评估中,展示了比以前的方法更优于对接和筛选力。我们的物理信息策略还通过可视化配体副结构的贡献来解释预测的亲和力,为进一步配体优化提供了见解。
translated by 谷歌翻译
弱监督的对象检测(WSOD)是一项任务,可使用仅在图像级注释上训练的模型来检测图像中的对象。当前的最新模型受益于自我监督的实例级别的监督,但是由于弱监督不包括计数或位置信息,因此最常见的``Argmax''标签方法通常忽略了许多对象实例。为了减轻此问题,我们提出了一种新颖的多个实例标记方法,称为对象发现。我们进一步在弱监督下引入了新的对比损失,在该监督下,没有实例级信息可用于采样,称为弱监督对比损失(WSCL)。WSCL旨在通过利用一致的功能来嵌入同一类中的向量来构建对象发现的可靠相似性阈值。结果,我们在2014年和2017年MS-Coco以及Pascal VOC 2012上取得了新的最新结果,并在Pascal VOC 2007上取得了竞争成果。
translated by 谷歌翻译
我们提出了一种新方法,用于近似于基于假设标记的候选数据点进行重新培训的主动学习获取策略。尽管这通常与深层网络不可行,但我们使用神经切线内核来近似重新进行重新培训的结果,并证明该近似值即使在主动学习设置中也无效 - 近似于“ look-aead abead”选择标准,所需的计算要少得多。 。这也使我们能够进行顺序的主动学习,即在流态中更新模型,而无需在添加每个新数据点后使用SGD重新训练模型。此外,我们的查询策略可以更好地理解模型的预测将如何通过与标准(“近视”)标准相比,通过大幅度击败其他查看策略,并获得相等或更好的性能,并取得了相等或更好的性能。基于池的主动学习中的几个基准数据集上的最新方法。
translated by 谷歌翻译
从3D点云中对可遍历区域和感兴趣的对象的感知是自主导航中的关键任务之一。一辆地面车辆需要寻找可以通过车轮探索的可遍历的地形。然后,为了做出安全的导航决定,必须跟踪位于这些地形上的物体的分割。但是,过度分割和分割不足可能会对此类导航决策产生负面影响。为此,我们提出了旅行,该行程使用3D点云的图表表示可遍历的地面检测和对象聚类。为了将可穿越的接地段分割,将点云编码为图形结构,即三个格里德字段,该场将每个三个格里德视为节点。然后,通过检查连接节点的边缘的局部凸度和凹度来搜索和重新定义可遍历的区域。另一方面,我们的地上对象分割通过表示球形预测空间中的一组水平相邻的3D点作为节点和节点之间的垂直/水平关系,以使用图形结构。充分利用节点边缘结构,上面的分割可确保实时操作并减轻过度分割。通过使用模拟,城市场景和我们自己的数据集的实验,我们已经证明,根据常规指标,我们提出的遍历地面分割算法优于其他最新方法,并且我们新提出的评估指标对于评估是有意义的地上细分。我们将在https://github.com/url-kaist/travel上向公开提供代码和自己的数据集。
translated by 谷歌翻译