Recognizing the surrounding environment at low latency is critical in autonomous driving. In real-time environment, surrounding environment changes when processing is over. Current detection models are incapable of dealing with changes in the environment that occur after processing. Streaming perception is proposed to assess the latency and accuracy of real-time video perception. However, additional problems arise in real-world applications due to limited hardware resources, high temperatures, and other factors. In this study, we develop a model that can reflect processing delays in real time and produce the most reasonable results. By incorporating the proposed feature queue and feature select module, the system gains the ability to forecast specific time steps without any additional computational costs. Our method is tested on the Argoverse-HD dataset. It achieves higher performance than the current state-of-the-art methods(2022.10) in various environments when delayed . The code is available at https://github.com/danjos95/DADE
translated by 谷歌翻译
Emerging real-time multi-model ML (RTMM) workloads such as AR/VR and drone control often involve dynamic behaviors in various levels; task, model, and layers (or, ML operators) within a model. Such dynamic behaviors are new challenges to the system software in an ML system because the overall system load is unpredictable unlike traditional ML workloads. Also, the real-time processing requires to meet deadlines, and multi-model workloads involve highly heterogeneous models. As RTMM workloads often run on resource-constrained devices (e.g., VR headset), developing an effective scheduler is an important research problem. Therefore, we propose a new scheduler, SDRM3, that effectively handles various dynamicity in RTMM style workloads targeting multi-accelerator systems. To make scheduling decisions, SDRM3 quantifies the unique requirements for RTMM workloads and utilizes the quantified scores to drive scheduling decisions, considering the current system load and other inference jobs on different models and input frames. SDRM3 has tunable parameters that provide fast adaptivity to dynamic workload changes based on a gradient descent-like online optimization, which typically converges within five steps for new workloads. In addition, we also propose a method to exploit model level dynamicity based on Supernet for exploiting the trade-off between the scheduling effectiveness and model performance (e.g., accuracy), which dynamically selects a proper sub-network in a Supernet based on the system loads. In our evaluation on five realistic RTMM workload scenarios, SDRM3 reduces the overall UXCost, which is a energy-delay-product (EDP)-equivalent metric for real-time applications defined in the paper, by 37.7% and 53.2% on geometric mean (up to 97.6% and 97.1%) compared to state-of-the-art baselines, which shows the efficacy of our scheduling methodology.
translated by 谷歌翻译
We study critical systems that allocate scarce resources to satisfy basic needs, such as homeless services that provide housing. These systems often support communities disproportionately affected by systemic racial, gender, or other injustices, so it is crucial to design these systems with fairness considerations in mind. To address this problem, we propose a framework for evaluating fairness in contextual resource allocation systems that is inspired by fairness metrics in machine learning. This framework can be applied to evaluate the fairness properties of a historical policy, as well as to impose constraints in the design of new (counterfactual) allocation policies. Our work culminates with a set of incompatibility results that investigate the interplay between the different fairness metrics we propose. Notably, we demonstrate that: 1) fairness in allocation and fairness in outcomes are usually incompatible; 2) policies that prioritize based on a vulnerability score will usually result in unequal outcomes across groups, even if the score is perfectly calibrated; 3) policies using contextual information beyond what is needed to characterize baseline risk and treatment effects can be fairer in their outcomes than those using just baseline risk and treatment effects; and 4) policies using group status in addition to baseline risk and treatment effects are as fair as possible given all available information. Our framework can help guide the discussion among stakeholders in deciding which fairness metrics to impose when allocating scarce resources.
translated by 谷歌翻译
Applying suction grippers in unstructured environments is a challenging task because of depth and tilt errors in vision systems, requiring additional costs in elaborate sensing and control. To reduce additional costs, suction grippers with compliant bodies or mechanisms have been proposed; however, their bulkiness and limited allowable error hinder their use in complex environments with large errors. Here, we propose a compact suction gripper that can pick objects over a wide range of distances and tilt angles without elaborate sensing and control. The spring-inserted gripper body deploys and conforms to distant and tilted objects until the suction cup completely seals with the object and retracts immediately after, while holding the object. This seamless deployment and retraction is enabled by connecting the gripper body and suction cup to the same vacuum source, which couples the vacuum picking and retraction of the gripper body. Experimental results validated that the proposed gripper can pick objects within 79 mm, which is 1.4 times the initial length, and can pick objects with tilt angles up to 60{\deg}. The feasibility of the gripper was verified by demonstrations, including picking objects of different heights from the same picking height and the bin picking of transparent objects.
translated by 谷歌翻译
Mirror descent is a gradient descent method that uses a dual space of parametric models. The great idea has been developed in convex optimization, but not yet widely applied in machine learning. In this study, we provide a possible way that the mirror descent can help data-driven parameter initialization of neural networks. We adopt the Hopfield model as a prototype of neural networks, we demonstrate that the mirror descent can train the model more effectively than the usual gradient descent with random parameter initialization.
translated by 谷歌翻译
The continuous increase in global population and the impact of climate change on crop production are expected to affect the food sector significantly. In this context, there is need for timely, large-scale and precise mapping of crops for evidence-based decision making. A key enabler towards this direction are new satellite missions that freely offer big remote sensing data of high spatio-temporal resolution and global coverage. During the previous decade and because of this surge of big Earth observations, deep learning methods have dominated the remote sensing and crop mapping literature. Nevertheless, deep learning models require large amounts of annotated data that are scarce and hard-to-acquire. To address this problem, transfer learning methods can be used to exploit available annotations and enable crop mapping for other regions, crop types and years of inspection. In this work, we have developed and trained a deep learning model for paddy rice detection in South Korea using Sentinel-1 VH time-series. We then fine-tune the model for i) paddy rice detection in France and Spain and ii) barley detection in the Netherlands. Additionally, we propose a modification in the pre-trained weights in order to incorporate extra input features (Sentinel-1 VV). Our approach shows excellent performance when transferring in different areas for the same crop type and rather promising results when transferring in a different area and crop type.
translated by 谷歌翻译
Recommender systems are a long-standing research problem in data mining and machine learning. They are incremental in nature, as new user-item interaction logs arrive. In real-world applications, we need to periodically train a collaborative filtering algorithm to extract user/item embedding vectors and therefore, a time-series of embedding vectors can be naturally defined. We present a time-series forecasting-based upgrade kit (TimeKit), which works in the following way: it i) first decides a base collaborative filtering algorithm, ii) extracts user/item embedding vectors with the base algorithm from user-item interaction logs incrementally, e.g., every month, iii) trains our time-series forecasting model with the extracted time- series of embedding vectors, and then iv) forecasts the future embedding vectors and recommend with their dot-product scores owing to a recent breakthrough in processing complicated time- series data, i.e., neural controlled differential equations (NCDEs). Our experiments with four real-world benchmark datasets show that the proposed time-series forecasting-based upgrade kit can significantly enhance existing popular collaborative filtering algorithms.
translated by 谷歌翻译
最近的几种方法,例如参数有效的微调(PEFT)和模式开发训练(PET),在标签筛选设置中取得了令人印象深刻的结果。但是,它们很难使用,因为它们会受到手动制作的提示的高度可变性,并且通常需要十亿参数语言模型才能达到高精度。为了解决这些缺点,我们提出了SETFIT(句子变压器微调),这是一个有效且迅速的框架,用于对句子变形金刚(ST)进行几次微调。 SetFit首先以对比的暹罗方式对少数文本对进行微调验证的st。然后将所得模型用于生成丰富的文本嵌入,这些嵌入方式用于训练分类头。这个简单的框架不需要任何提示或口头化,并且比现有技术少的参数较少,因此可以实现高精度。我们的实验表明,SetFit通过PEFT和PET技术获得了可比的结果,同时训练的速度更快。我们还表明,SETFIT可以通过简单地切换ST主体来应用于多语言设置。我们的代码可从https://github.com/huggingface/setFit以及我们的数据集获得,网址为https://huggingface.co/setfit。
translated by 谷歌翻译
在这项研究中,我们提出了一种基于词素的方案,用于韩国依赖解析,并采用拟议方案来普遍依赖。我们介绍了语言原理,该基本原理说明了采用基于词素的格式的动机和必要性,并开发了脚本,这些脚本会在通用依赖项使用的原始格式和所提出的基于词素的格式自动之间转换。然后,统计和神经模型(包括udpipe和stanza)证明了提出的格式对韩国依赖解析的有效性,并以我们精心构造的基于词素的单词嵌入韩语。Morphud的表现优于所有韩国UD Treebanks的解析结果,我们还提供了详细的错误分析。
translated by 谷歌翻译
具有有限培训数据的自然语言建模是一个具有挑战性的问题,许多算法由于其出色的概括能力而利用大规模预处理的语言模型(PLM)。其中,在固定的大规模PLM之上结合了特定于任务的适配器的增材学习,已普遍用于几次设置。但是,这种增加的适配器仍然很容易忽略PLM的知识,尤其是对于几种自然语言生成(NLG),因为整个序列通常仅由新训练的适配器生成。因此,在这项工作中,我们基于强化学习(RL)开发了一种新颖的添加剂学习算法,该算法在培训和推理过程中有选择地在任务将军PLM和特定于任务的适配器之间输出语言令牌。对两个发电机的输出令牌选择可以使适配器仅考虑到序列生成的任务相关的部分,因此使其更适合过度拟合,并且在RL培训中更稳定。此外,为了从PLM获取每个几次任务的互补适配器,我们利用一个单独的选择模块,该模块也接受了RL同时训练。对各种少数NLG任务的实验结果,包括问题回答,数据到文本生成和文本摘要表明,所提出的选择性令牌生成显着优于基于PLM的先前的加性学习算法。
translated by 谷歌翻译