深度生成模型吸引了具有所需特性的分子设计的极大关注。大多数现有模型通过顺序添加原子来产生分子。这通常会使产生的分子与目标性能和低合成可接近性较少。诸如官能团的分子片段与分子性质和合成可接近的比原子更密切相关。在此,我们提出了一种基于片段的分子发生模型,其通过顺序向任何给定的起始分子依次向任何给定的起始分子添加分子片段来设计具有靶性质的新分子。我们模型的一个关键特征是属性控制和片段类型方面的高概括能力。通过以自动回归方式学习各个片段对目标属性的贡献来实现前者。对于后者,我们使用深神经网络,其从两个分子的嵌入载体中预测两个分子的键合概率作为输入。在用金砖石分解方法制备片段文库的同时隐式考虑所生成的分子的高合成可用性。我们表明该模型可以以高成功率同时控制多个目标性质的分子。即使在培训数据很少的财产范围内,它也与看不见的片段同样很好地工作,验证高概括能力。作为一种实际应用,我们证明,在对接得分方面,该模型可以产生具有高结合亲和力的潜在抑制剂,其抗对接得分的3CL-COV-2。
translated by 谷歌翻译
最近,基于深度神经网络(DNN)的药物 - 目标相互作用(DTI)模型以高精度突出显示,具有实惠的计算成本。然而,模型在硅药物发现的实践中仍然是一个具有挑战性的问题。我们提出了两项​​关键策略,以提高DTI模型的概括。首先是通过用神经网络参数化的物理通知方程来预测原子原子对相互作用,并提供蛋白质 - 配体复合物作为其总和的总结合亲和力。通过增强更广泛的绑定姿势和配体来培训数据,我们进一步改善了模型泛化。我们验证了我们的模型,PIGNET,在评分职能(CASF)2016的比较评估中,展示了比以前的方法更优于对接和筛选力。我们的物理信息策略还通过可视化配体副结构的贡献来解释预测的亲和力,为进一步配体优化提供了见解。
translated by 谷歌翻译
在过去的十年中,我们看到了工业数据,计算能力的巨大改善以及机器学习的重大理论进步。这为在大规模非线性监控和控制问题上使用现代机器学习工具提供了机会。本文对过程行业的应用进行了对最新结果的调查。
translated by 谷歌翻译
特征相似性匹配将参考框架的信息传输到查询框架,是半监视视频对象分割中的关键组件。如果采用了汇总匹配,则背景干扰器很容易出现并降低性能。徒匹配机制试图通过限制要传输到查询框架的信息的量来防止这种情况,但是有两个局限性:1)由于在测试时转换为两种匹配,因此无法完全利用过滤匹配的匹配; 2)搜索最佳超参数需要测试时间手动调整。为了在确保可靠的信息传输的同时克服这些局限性,我们引入了均衡的匹配机制。为了防止参考框架信息过于引用,通过简单地将SoftMax操作与查询一起应用SoftMax操作,对查询框架的潜在贡献得到了均等。在公共基准数据集上,我们提出的方法与最先进的方法达到了可比的性能。
translated by 谷歌翻译
机器学习(ML)为生物处理工程的发展做出了重大贡献,但其应用仍然有限,阻碍了生物过程自动化的巨大潜力。用于模型构建自动化的ML可以看作是引入另一种抽象水平的一种方式,将专家的人类集中在生物过程开发的最认知任务中。首先,概率编程用于预测模型的自动构建。其次,机器学习会通过计划实验来测试假设并进行调查以收集信息性数据来自动评估替代决策,以收集基于模型预测不确定性的模型选择的信息数据。这篇评论提供了有关生物处理开发中基于ML的自动化的全面概述。一方面,生物技术和生物工程社区应意识到现有ML解决方案在生物技术和生物制药中的应用的限制。另一方面,必须确定缺失的链接,以使ML和人工智能(AI)解决方案轻松实施在有价值的生物社区解决方案中。我们总结了几个重要的生物处理系统的ML实施,并提出了两个至关重要的挑战,这些挑战仍然是生物技术自动化的瓶颈,并减少了生物技术开发的不确定性。没有一个合适的程序;但是,这项综述应有助于确定结合生物技术和ML领域的潜在自动化。
translated by 谷歌翻译
相机陷阱,无人观察设备和基于深度学习的图像识别系统在收集和分析野生动植物图像方​​面的努力大大减少了。但是,通过上述设备收集的数据表现出1)长尾巴和2)开放式分布问题。为了解决开放设定的长尾识别问题,我们提出了包括三个关键构件的时间流面膜注意网络:1)光流模块,2)注意残留模块,3)一个元物质分类器。我们使用光流模块提取顺序帧的时间特征,并使用注意残留块学习信息表示。此外,我们表明,应用元装置技术可以在开放式长尾识别中提高该方法的性能。我们将此方法应用于韩国非军事区(DMZ)数据集。我们进行了广泛的实验以及定量和定性分析,以证明我们的方法有效地解决了开放式的长尾识别问题,同时对未知类别进行了强大的态度。
translated by 谷歌翻译
在多模式的行动识别中,重要的是,不仅要考虑不同方式的互补性,而且考虑全球动作内容。在本文中,我们提出了一个名为Modital Mixer(M-Mixer)网络的新颖网络,以利用跨模态和动作的时间上下文的互补信息进行多模式动作识别。我们还引入了一个简单而有效的复发单元,称为多模式上下文化单元(MCU),该单元(MCU)是M-Mixer的核心组成部分。我们的MCU在时间上编码具有其他模态的动作内容特征(例如Depth,ir)的动作内容特征。该过程鼓励M-Mixer利用全球行动内容,并补充其他模式的互补信息。结果,我们提出的方法优于NTU RGB+D 60,NTU RGB+D 120和NW-UCLA数据集的最先进方法。此外,我们通过进行全面的消融研究来证明M混合物的有效性。
translated by 谷歌翻译
在本文中,我们提出了一种使用CNN和变压器结构融合以提高图像分类性能的方法。对于CNN,可以很好地提取有关图像上局部区域的信息,但是限制了全局信息的提取。另一方面,变压器在相对全局的提取方面具有优势,但缺点是因为它需要大量的内存来进行本地特征值提取。在图像的情况下,它通过CNN转换为特征映射,每个特征映射的像素都被视为令牌。同时,将图像分为贴片区域,然后与将其视为令牌视图的变压器方法融合在一起。对于令牌与两个不同特征的融合,我们提出了三种方法:(1)具有平行结构的晚令融合,(2)早期令牌融合,(3)逐层中的令牌融合。在使用Imagenet 1K的实验中,提出的方法显示了最佳的分类性能。
translated by 谷歌翻译
具有提高可传递性的对抗性攻击 - 在已知模型上精心制作的对抗性示例的能力也欺骗了未知模型 - 由于其实用性,最近受到了很多关注。然而,现有的可转移攻击以确定性的方式制作扰动,并且常常无法完全探索损失表面,从而陷入了贫穷的当地最佳最佳效果,并且遭受了低传递性的折磨。为了解决这个问题,我们提出了细心多样性攻击(ADA),该攻击以随机方式破坏了不同的显着特征以提高可转移性。首先,我们将图像注意力扰动到破坏不同模型共享的通用特征。然后,为了有效避免局部优势差,我们以随机方式破坏了这些功能,并更加详尽地探索可转移扰动的搜索空间。更具体地说,我们使用发电机来产生对抗性扰动,每个扰动都根据输入潜在代码而以不同的方式打扰。广泛的实验评估证明了我们方法的有效性,优于最先进方法的可转移性。代码可在https://github.com/wkim97/ada上找到。
translated by 谷歌翻译
大脑磁共振成像(MRI)扫描的自动分割和体积对于诊断帕金森氏病(PD)和帕金森氏症综合症(P-Plus)至关重要。为了提高诊断性能,我们在大脑分割中采用了深度学习(DL)模型,并将其性能与金标准的非DL方法进行了比较。我们收集了健康对照组(n = 105)和PD患者(n = 105),多个全身性萎缩(n = 132)和渐进性超核麻痹(n = 69)的大脑MRI扫描。 2020.使用金标准的非DL模型FreeSurfer(FS),我们对六个脑结构进行了分割:中脑,PON,CAUDATE,CAUDATE,PUTATATE,pALLIDUM和THIRD CNTRICLE,并将其视为DL模型的注释数据,代表性V -net和unet。计算了分化正常,PD和P-Plus病例的曲线下的骰子分数和面积。每位患者六个大脑结构的V-NET和UNETR的分割时间分别为3.48 +-0.17和48.14 +-0.97 s,比FS(15,735 +-1.07 s)快至少300倍。两种DL模型的骰子得分都足够高(> 0.85),它们的疾病分类AUC优于FS。为了分类正常与P-Plus和PD与多个全身性萎缩(小脑型)的分类,DL模型和FS显示出高于0.8的AUC。 DL显着减少了分析时间,而不会损害大脑分割和差异诊断的性能。我们的发现可能有助于在临床环境中采用DL脑MRI分割并提高大脑研究。
translated by 谷歌翻译