Vision-Centric Bird-Eye-View (BEV) perception has shown promising potential and attracted increasing attention in autonomous driving. Recent works mainly focus on improving efficiency or accuracy but neglect the domain shift problem, resulting in severe degradation of transfer performance. With extensive observations, we figure out the significant domain gaps existing in the scene, weather, and day-night changing scenarios and make the first attempt to solve the domain adaption problem for multi-view 3D object detection. Since BEV perception approaches are usually complicated and contain several components, the domain shift accumulation on multi-latent spaces makes BEV domain adaptation challenging. In this paper, we propose a novel Multi-level Multi-space Alignment Teacher-Student ($M^{2}ATS$) framework to ease the domain shift accumulation, which consists of a Depth-Aware Teacher (DAT) and a Multi-space Feature Aligned (MFA) student model. Specifically, DAT model adopts uncertainty guidance to sample reliable depth information in target domain. After constructing domain-invariant BEV perception, it then transfers pixel and instance-level knowledge to student model. To further alleviate the domain shift at the global level, MFA student model is introduced to align task-relevant multi-space features of two domains. To verify the effectiveness of $M^{2}ATS$, we conduct BEV 3D object detection experiments on four cross domain scenarios and achieve state-of-the-art performance (e.g., +12.6% NDS and +9.1% mAP on Day-Night). Code and dataset will be released.
translated by 谷歌翻译
本文介绍了对聪明差异的检查,并以三个机会的层次进行了检查。当结果在波动的载荷下方时,将差异速度和力解释为三个结果的主要差异,但是当暴露于接近载荷时,将其等效的运动和力与其结果相等。确定的运动学和元素在三种不同的负担案件下进行了假设研究。此外,三个负担案件的移动也被重新创建并集中在其当前和潜在应用以及其当前和潜在应用的好处。
translated by 谷歌翻译
设计一个管道内的攀岩机器人,该机器人操纵锋利的齿轮以研究复杂的线关系。探索管道曲线时,传统的滚动/发生管道攀爬机器人往往会滑动。提议的变速箱连接到标准双输出变速箱的最远地面平面。仪器有助于实现一个非常明确的减速序列,在该序列中,机器人在向前移动时滑动和拉动。该仪器考虑了线路关系中每个轨道上施加的力,并有意修改机器人的轨道速度,从而解锁了微调的钥匙。这使得3个输出传输需要大量时间。机器人在具有各种轴承和防滑管道弯曲的管网上的挠度证明了所提出的结构的完整性。
translated by 谷歌翻译
最近,深层神经网络(DNNS)用于减少带宽并提高互联网视频交付的质量。现有的方法训练服务器上每个视频块的相应内容超级分辨率(SR)模型,并将低分辨率(LR)视频块以及SR模型一起流到客户端。尽管他们取得了令人鼓舞的结果,但网络培训的巨大计算成本限制了其实际应用。在本文中,我们提出了一种名为有效元调整(EMT)的方法,以降低计算成本。 EMT没有从头开始训练,而是将元学习的模型适应了输入视频的第一部分。至于以下块,它通过以前的改编模型的梯度掩盖选择了部分参数。为了实现EMT的进一步加速,我们提出了一种新颖的抽样策略,以从视频帧中提取最具挑战性的补丁。拟议的策略高效,带来了可忽略的额外成本。我们的方法大大降低了计算成本并取得更好的性能,为将神经视频传递技术应用于实际应用铺平了道路。我们基于各种有效的SR架构进行了广泛的实验,包括ESPCN,SRCNN,FSRCNN和EDSR-1,证明了我们工作的概括能力。该代码通过\ url {https://github.com/neural-video-delivery/emt-pytorch-eccv2022}发布。
translated by 谷歌翻译
由于计算的未来是异质的,因此可伸缩性是单图超分辨率的关键问题。最近的工作尝试训练一个网络,该网络可以部署在具有不同能力的平台上。但是,他们依靠像素稀疏卷积,这不是硬件友好,并且实现了有限的实际加速。由于可以将图像分为各种恢复困难的斑块,因此我们提出了一种基于自适应贴片(APE)的可扩展方法,以实现更实用的加速。具体而言,我们建议训练回归器,以预测贴片每一层的增量能力。一旦增量容量低于阈值,贴片就可以在特定层中退出。我们的方法可以通过改变增量容量的阈值来轻松调整性能和效率之间的权衡。此外,我们提出了一种新的策略,以实现我们方法的网络培训。我们在各种骨架,数据集和缩放因素上进行了广泛的实验,以证明我们方法的优势。代码可从https://github.com/littlepure2333/ape获得
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
It has been observed in practice that applying pruning-at-initialization methods to neural networks and training the sparsified networks can not only retain the testing performance of the original dense models, but also sometimes even slightly boost the generalization performance. Theoretical understanding for such experimental observations are yet to be developed. This work makes the first attempt to study how different pruning fractions affect the model's gradient descent dynamics and generalization. Specifically, this work considers a classification task for overparameterized two-layer neural networks, where the network is randomly pruned according to different rates at the initialization. It is shown that as long as the pruning fraction is below a certain threshold, gradient descent can drive the training loss toward zero and the network exhibits good generalization performance. More surprisingly, the generalization bound gets better as the pruning fraction gets larger. To complement this positive result, this work further shows a negative result: there exists a large pruning fraction such that while gradient descent is still able to drive the training loss toward zero (by memorizing noise), the generalization performance is no better than random guessing. This further suggests that pruning can change the feature learning process, which leads to the performance drop of the pruned neural network. Up to our knowledge, this is the \textbf{first} generalization result for pruned neural networks, suggesting that pruning can improve the neural network's generalization.
translated by 谷歌翻译
Time-series anomaly detection is an important task and has been widely applied in the industry. Since manual data annotation is expensive and inefficient, most applications adopt unsupervised anomaly detection methods, but the results are usually sub-optimal and unsatisfactory to end customers. Weak supervision is a promising paradigm for obtaining considerable labels in a low-cost way, which enables the customers to label data by writing heuristic rules rather than annotating each instance individually. However, in the time-series domain, it is hard for people to write reasonable labeling functions as the time-series data is numerically continuous and difficult to be understood. In this paper, we propose a Label-Efficient Interactive Time-Series Anomaly Detection (LEIAD) system, which enables a user to improve the results of unsupervised anomaly detection by performing only a small amount of interactions with the system. To achieve this goal, the system integrates weak supervision and active learning collaboratively while generating labeling functions automatically using only a few labeled data. All of these techniques are complementary and can promote each other in a reinforced manner. We conduct experiments on three time-series anomaly detection datasets, demonstrating that the proposed system is superior to existing solutions in both weak supervision and active learning areas. Also, the system has been tested in a real scenario in industry to show its practicality.
translated by 谷歌翻译
As an important variant of entity alignment (EA), multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) with multiple modalities like images. However, current MMEA algorithms all adopt KG-level modality fusion strategies but ignore modality differences among individual entities, hurting the robustness to potential noise involved in modalities (e.g., unidentifiable images and relations). In this paper we present MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, to dynamically predict the mutual correlation coefficients among modalities for instance-level feature fusion. A modal-aware hard entity replay strategy is also proposed for addressing vague entity details. Extensive experimental results show that our model not only achieves SOTA performance on multiple training scenarios including supervised, unsupervised, iterative, and low resource, but also has limited parameters, optimistic speed, and good interpretability. Our code will be available soon.
translated by 谷歌翻译
The task of video prediction and generation is known to be notoriously difficult, with the research in this area largely limited to short-term predictions. Though plagued with noise and stochasticity, videos consist of features that are organised in a spatiotemporal hierarchy, different features possessing different temporal dynamics. In this paper, we introduce Dynamic Latent Hierarchy (DLH) -- a deep hierarchical latent model that represents videos as a hierarchy of latent states that evolve over separate and fluid timescales. Each latent state is a mixture distribution with two components, representing the immediate past and the predicted future, causing the model to learn transitions only between sufficiently dissimilar states, while clustering temporally persistent states closer together. Using this unique property, DLH naturally discovers the spatiotemporal structure of a dataset and learns disentangled representations across its hierarchy. We hypothesise that this simplifies the task of modeling temporal dynamics of a video, improves the learning of long-term dependencies, and reduces error accumulation. As evidence, we demonstrate that DLH outperforms state-of-the-art benchmarks in video prediction, is able to better represent stochasticity, as well as to dynamically adjust its hierarchical and temporal structure. Our paper shows, among other things, how progress in representation learning can translate into progress in prediction tasks.
translated by 谷歌翻译