Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Normalizing flow is a class of deep generative models for efficient sampling and density estimation. In practice, the flow often appears as a chain of invertible neural network blocks; to facilitate training, existing works have regularized flow trajectories and designed special network architectures. The current paper develops a neural ODE flow network inspired by the Jordan-Kinderleherer-Otto (JKO) scheme, which allows efficient block-wise training of the residual blocks and avoids inner loops of score matching or variational learning. As the JKO scheme unfolds the dynamic of gradient flow, the proposed model naturally stacks residual network blocks one-by-one, reducing the memory load and difficulty of performing end-to-end training of deep flow networks. We also develop adaptive time reparameterization of the flow network with a progressive refinement of the trajectory in probability space, which improves the model training efficiency and accuracy in practice. Using numerical experiments with synthetic and real data, we show that the proposed JKO-iFlow model achieves similar or better performance in generating new samples compared with existing flow and diffusion models at a significantly reduced computational and memory cost.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Virtual reality (VR) over wireless is expected to be one of the killer applications in next-generation communication networks. Nevertheless, the huge data volume along with stringent requirements on latency and reliability under limited bandwidth resources makes untethered wireless VR delivery increasingly challenging. Such bottlenecks, therefore, motivate this work to seek the potential of using semantic communication, a new paradigm that promises to significantly ease the resource pressure, for efficient VR delivery. To this end, we propose a novel framework, namely WIreless SEmantic deliveRy for VR (WiserVR), for delivering consecutive 360{\deg} video frames to VR users. Specifically, deep learning-based multiple modules are well-devised for the transceiver in WiserVR to realize high-performance feature extraction and semantic recovery. Among them, we dedicatedly develop a concept of semantic location graph and leverage the joint-semantic-channel-coding method with knowledge sharing to not only substantially reduce communication latency, but also to guarantee adequate transmission reliability and resilience under various channel states. Moreover, implementation of WiserVR is presented, followed by corresponding initial simulations for performance evaluation compared with benchmarks. Finally, we discuss several open issues and offer feasible solutions to unlock the full potential of WiserVR.
translated by 谷歌翻译
Spiking Neural Networks (SNNs) have been studied over decades to incorporate their biological plausibility and leverage their promising energy efficiency. Throughout existing SNNs, the leaky integrate-and-fire (LIF) model is commonly adopted to formulate the spiking neuron and evolves into numerous variants with different biological features. However, most LIF-based neurons support only single biological feature in different neuronal behaviors, limiting their expressiveness and neuronal dynamic diversity. In this paper, we propose GLIF, a unified spiking neuron, to fuse different bio-features in different neuronal behaviors, enlarging the representation space of spiking neurons. In GLIF, gating factors, which are exploited to determine the proportion of the fused bio-features, are learnable during training. Combining all learnable membrane-related parameters, our method can make spiking neurons different and constantly changing, thus increasing the heterogeneity and adaptivity of spiking neurons. Extensive experiments on a variety of datasets demonstrate that our method obtains superior performance compared with other SNNs by simply changing their neuronal formulations to GLIF. In particular, we train a spiking ResNet-19 with GLIF and achieve $77.35\%$ top-1 accuracy with six time steps on CIFAR-100, which has advanced the state-of-the-art. Codes are available at \url{https://github.com/Ikarosy/Gated-LIF}.
translated by 谷歌翻译
提出了基于视觉变压器(VLT)的新型场景文本识别器。受NLP领域的Levenshtein Transformer的启发,提出的方法(命名为Levenshtein OCR和Short Levocr)探索了一种自动从裁剪自然图像中自动转录文本内容的替代方法。具体而言,我们将场景文本识别的问题视为迭代序列完善过程。由纯视觉模型产生的初始预测序列被编码并馈送到跨模式变压器中,以与视觉特征相互作用并融合,以逐渐近似地面真理。改进过程是通过两个基本字符级操作完成的:删除和插入,它们是通过模仿学习来学习的,并允许并行解码,动态长度变化和良好的解释性。定量实验清楚地表明,Levocr在标准基准上实现最新性能,定性分析验证了拟议的Levocr算法的有效性和优势。代码将很快发布。
translated by 谷歌翻译
多年来,场景文本识别(STR)一直是计算机视觉的积极研究主题。为了解决这个具有挑战性的问题,已经提出了许多创新的方法,并将语言知识纳入STR模型最近已成为一个显着的趋势。在这项工作中,我们首先从视觉变压器(VIT)的最新进展中汲取灵感来构建一个概念上简单而强大的视觉str模型,该模型建立在VIT和胜过以前的现场文本识别的先前最新模型,包括纯视觉模型和语言增强方法。为了整合语言知识,我们进一步提出了一种多粒性预测策略,以隐式方式将信息从语言模式注入模型,即NLP中广泛使用的子字表示(BPE和Wordpiece)被引入输出空间,除了传统的字符级别表示外,不采用独立语言模型(LM)。所得的算法(称为MGP-STR)能够将Str的性能包络提高到更高的水平。具体而言,它的平均识别精度在标准基准上达到93.35%。代码将很快发布。
translated by 谷歌翻译
图形神经网络(GNN)是具有无核数据的应用的有前途的方法。但是,具有数亿节点的大规模图上的培训GNN既是资源又是耗时的。与DNN不同,GNN通常具有更大的内存足迹,因此GPU内存能力和PCIE带宽是GNN培训中的主要资源瓶颈。为了解决此问题,我们提出分叉:一种图形量化方法,通过显着减少内存足迹和PCIE带宽要求来加速GNN训练,以便GNN可以充分利用GPU计算功能。我们的关键见解是,与DNN不同,GNN不太容易发生量化引起的输入特征的信息丢失。我们确定图形特征量化中的主要准确性影响因素,从理论上证明,分叉训练会收敛到网络,在该网络中,损失在未压缩网络的最佳损失的$ \ epsilon $之内。我们使用几种流行的GNN模型和数据集对分叉进行了广泛的评估,包括最大的公共图数据集MAG240M上的图形。结果表明,分叉达到30以上的压缩率,并在边际准确性损失的情况下提高了GNN训练速度200%-320%。特别是,分叉在一小时内仅使用四个GPU在MAG240M上的训练图来实现记录。
translated by 谷歌翻译
随着深度卷积神经网络的兴起,对象检测在过去几年中取得了突出的进步。但是,这种繁荣无法掩盖小物体检测(SOD)的不令人满意的情况,这是计算机视觉中臭名昭著的挑战性任务之一,这是由于视觉外观不佳和由小目标的内在结构引起的嘈杂表示。此外,用于基准小对象检测方法基准测试的大规模数据集仍然是瓶颈。在本文中,我们首先对小物体检测进行了详尽的审查。然后,为了催化SOD的发展,我们分别构建了两个大规模的小物体检测数据集(SODA),SODA-D和SODA-A,分别集中在驾驶和空中场景上。 SODA-D包括24704个高质量的交通图像和277596个9个类别的实例。对于苏打水,我们收集2510个高分辨率航空图像,并在9个类别上注释800203实例。众所周知,拟议的数据集是有史以来首次尝试使用针对多类SOD量身定制的大量注释实例进行大规模基准测试。最后,我们评估主流方法在苏打水上的性能。我们预计发布的基准可以促进SOD的发展,并产生该领域的更多突破。数据集和代码将很快在:\ url {https://shaunyuan22.github.io/soda}上。
translated by 谷歌翻译
最近,深层神经网络(DNNS)用于减少带宽并提高互联网视频交付的质量。现有的方法训练服务器上每个视频块的相应内容超级分辨率(SR)模型,并将低分辨率(LR)视频块以及SR模型一起流到客户端。尽管他们取得了令人鼓舞的结果,但网络培训的巨大计算成本限制了其实际应用。在本文中,我们提出了一种名为有效元调整(EMT)的方法,以降低计算成本。 EMT没有从头开始训练,而是将元学习的模型适应了输入视频的第一部分。至于以下块,它通过以前的改编模型的梯度掩盖选择了部分参数。为了实现EMT的进一步加速,我们提出了一种新颖的抽样策略,以从视频帧中提取最具挑战性的补丁。拟议的策略高效,带来了可忽略的额外成本。我们的方法大大降低了计算成本并取得更好的性能,为将神经视频传递技术应用于实际应用铺平了道路。我们基于各种有效的SR架构进行了广泛的实验,包括ESPCN,SRCNN,FSRCNN和EDSR-1,证明了我们工作的概括能力。该代码通过\ url {https://github.com/neural-video-delivery/emt-pytorch-eccv2022}发布。
translated by 谷歌翻译