Drug repositioning holds great promise because it can reduce the time and cost of new drug development. While drug repositioning can omit various R&D processes, confirming pharmacological effects on biomolecules is essential for application to new diseases. Biomedical explainability in a drug repositioning model can support appropriate insights in subsequent in-depth studies. However, the validity of the XAI methodology is still under debate, and the effectiveness of XAI in drug repositioning prediction applications remains unclear. In this study, we propose GraphIX, an explainable drug repositioning framework using biological networks, and quantitatively evaluate its explainability. GraphIX first learns the network weights and node features using a graph neural network from known drug indication and knowledge graph that consists of three types of nodes (but not given node type information): disease, drug, and protein. Analysis of the post-learning features showed that node types that were not known to the model beforehand are distinguished through the learning process based on the graph structure. From the learned weights and features, GraphIX then predicts the disease-drug association and calculates the contribution values of the nodes located in the neighborhood of the predicted disease and drug. We hypothesized that the neighboring protein node to which the model gave a high contribution is important in understanding the actual pharmacological effects. Quantitative evaluation of the validity of protein nodes' contribution using a real-world database showed that the high contribution proteins shown by GraphIX are reasonable as a mechanism of drug action. GraphIX is a framework for evidence-based drug discovery that can present to users new disease-drug associations and identify the protein important for understanding its pharmacological effects from a large and complex knowledge base.
translated by 谷歌翻译
基于有效干预措施的早期疾病检测和预防方法正在引起人们的注意。机器学习技术通过捕获多元数据中的个体差异来实现精确的疾病预测。精确医学的进展表明,在个人层面的健康数据中存在实质性异质性,并且复杂的健康因素与慢性疾病的发展有关。但是,由于多种生物标志物之间的复杂关系,确定跨疾病发作过程中的个体生理状态变化仍然是一个挑战。在这里,我们介绍了健康疾病阶段图(HDPD),它通过可视化在疾病进展过程早期波动的多种生物标志物的边界值来代表个人健康状态。在HDPD中,未来的发作预测是通过扰动多个生物标志物值的情况来表示的,同时考虑变量之间的依赖性。我们从3,238个个体的纵向健康检查队列中构建了11种非传染性疾病(NCD)的HDPD,其中包括3,215个测量项目和遗传数据。 HDPD中非发病区域的生物标志物值的改善显着阻止了11个NCD中的7个未来的疾病发作。我们的结果表明,HDPD可以在发作过程中代表单个生理状态,并用作预防疾病的干预目标。
translated by 谷歌翻译
大量量化在线用户活动数据,例如每周网络搜索量,这些数据与几个查询和位置的相互影响共同进化,是一个重要的社交传感器。通过从此类数据中发现潜在的相互作用,即每个查询之间的生态系统和每个区域之间的影响流,可以准确预测未来的活动。但是,就数据数量和涵盖动力学的复杂模式而言,这是一个困难的问题。为了解决这个问题,我们提出了FluxCube,这是一种有效的采矿方法,可预测大量共同发展的在线用户活动并提供良好的解释性。我们的模型是两个数学模型的组合的扩展:一个反应扩散系统为建模局部群体之间的影响流和生态系统建模的框架提供了一个模拟每个查询之间的潜在相互作用。同样,通过利用物理知识的神经网络的概念,FluxCube可以共同获得从参数和高预测性能获得的高解释性。在实际数据集上进行的广泛实验表明,从预测准确性方面,FluxCube优于可比较的模型,而FluxCube中的每个组件都会有助于增强性能。然后,我们展示了一些案例研究,即FluxCube可以在查询和区域组之间提取有用的潜在相互作用。
translated by 谷歌翻译
如今,为了改善服务和城市地区的宜居性,全世界正在进行多个智能城市计划。 SmartSantander是西班牙桑坦德市的一个智能城市项目,该项目依靠无线传感器网络技术在城市内部部署异质传感器,以测量多个参数,包括户外停车信息。在本文中,我们使用SmartSantander的300多个户外停车传感器的历史数据研究了停车场可用性的预测。我们设计了一个图形模型,以捕获停车场的定期波动和地理位置。为了开发和评估我们的模型,我们使用了桑坦德市的3年停车场可用性数据集。与现有的序列到序列模型相比,我们的模型具有很高的精度,该模型足够准确,可以在城市提供停车信息服务。我们将模型应用于智能手机应用程序,以被公民和游客广泛使用。
translated by 谷歌翻译
最近,检测变压器(DETR)是一种端到端对象检测管道,已达到有希望的性能。但是,它需要大规模标记的数据,并遭受域移位,尤其是当目标域中没有标记的数据时。为了解决这个问题,我们根据平均教师框架MTTRANS提出了一个端到端的跨域检测变压器,该变压器可以通过伪标签充分利用对象检测训练中未标记的目标域数据和在域之间的传输知识中的传输知识。我们进一步提出了综合的多级特征对齐方式,以改善由平均教师框架生成的伪标签,利用跨尺度的自我注意事项机制在可变形的DETR中。图像和对象特征在本地,全局和实例级别与基于域查询的特征对齐(DQFA),基于BI级的基于图形的原型对齐(BGPA)和Wine-Wise图像特征对齐(TIFA)对齐。另一方面,未标记的目标域数据伪标记,可用于平均教师框架的对象检测训练,可以导致更好的特征提取和对齐。因此,可以根据变压器的架构对迭代和相互优化的平均教师框架和全面的多层次特征对齐。广泛的实验表明,我们提出的方法在三个领域适应方案中实现了最先进的性能,尤其是SIM10K到CityScapes方案的结果,从52.6地图提高到57.9地图。代码将发布。
translated by 谷歌翻译
对于监督分类问题,本文考虑通过使用观察到的协变量来估算查询的标签概率。众所周知的非参数内核更顺畅,并在查询周围的球上占据平均值的$ k $-n $-nnn)估算器,但特别是对于球的大半径偏向而渐近偏差。消除这种偏差,本地多项式回归(LPOR)和Multiscale $ K $ -NN(MS-$ K $ -NN)通过围绕查询周围的本地回归来学习偏置术语并将其推断给查询本身。然而,他们的理论最优性已经显示为无限数量的训练样本的限制。为了纠正具有较少观察的渐近偏差,本文提出了一种局部径向回归(LRR)及其逻辑回归变量,称为局部径向逻辑回归(LRLR),通过结合LPOS和MS-$ K $ -NN的优点。这个想法很简单:通过将径向距离作为解释变量将径向距离施加到观察标签的本地回归,然后将估计的标记概率推断为零距离。我们的数值实验包括日常股票指数的现实世界数据集,证明了LRLR胜过LPOR和MS $ K $ -NN。
translated by 谷歌翻译
本文讨论了概括间隙,泛化差距与经验误差之间的差异,用于过度分子化模型(例如,神经网络)。我们首先表明,在定义广泛应用的信息标准定义广泛适用的信息标准的关键概念,即使在常见的情况下,概括间隙也表征了概括间隙,其中不能应用传统理论。我们接下来提出了计算上有效的函数方差的近似,函数方差的Langevin近似〜(Langevin FV)。该方法利用了一个平方损失功能的第1阶但不是2nd阶梯度;因此,可以通过基于梯度的优化算法始终如一地计算它。我们在数值上展示了Langevin FV,估计了过分鉴定的线性回归和非线性神经网络模型的泛化差距。
translated by 谷歌翻译
我们研究了估算平面上的逆函数的极小风险,同时保持估计也是可逆的。从数据和利用可逆估计的学习可靠性在许多域中使用,例如统计,经济学和机器学习。虽然可逆估计的一致性和普遍性得到了很好的调查,但这些方法的效率仍在开发中。在这项研究中,我们研究了在$ 2 $ 2的平面上估算可逆的双唇尖端函数的最低风险。我们首先介绍一个逆价$ l ^ 2 $ -RISK以评估保留可逆性的估算器。然后,我们通过利用使用级别集的可逆函数的表示来导出最小的逆风险的更低和上限。为了获得一个上限,我们开发渐近的估计器几乎无可争互变,其风险达到了衍生的最低限度达到对数因素的速度。导出的最小值率对应于不可逆转的Bi-LipsChitz功能的速率,其拒绝了可逆性是否提高了最小值率的预期,类似于其他形状约束。
translated by 谷歌翻译
多个空中机器人的合作运输有可能支持各种有效载荷,并减少他们被丢弃的可能性。此外,自动控制的机器人使系统相对于有效载荷可扩展。在本研究中,使用刚性附加的空中机器人开发了合作运输系统,并提出了一种分散的控制器,以保证未知严格正实际系统的跟踪误差的渐近稳定性。反馈控制器用于使用共享附件位置将不稳定的系统转换为严格的正实真实的系统。首先,通过数值模拟研究了具有比载体机器人大的不同形状的未知有效载荷的合作运输。其次,使用八个机器人在机器人失败下,使用八个机器人进行了未知有效载荷(重量约为2.7千克,最大长度为1.6米的重量)的合作运输。最后,表明所提出的系统携带了一个未知的有效载荷,即使附着位置未被共享,即,即使不严格保证渐近稳定性也是如此。
translated by 谷歌翻译