The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
translated by 谷歌翻译
由于其定量优点和高灵敏度,位置排放断层扫描(PET)被广泛用于诊所和研究中,但遭受了低信噪比(SNR)的侵害。最近,卷积神经网络(CNN)已被广泛用于提高宠物图像质量。尽管在局部特征提取方面取得了成功和有效的效率,但由于其接受场有限,CNN无法很好地捕获远距离依赖性。全球多头自我注意力(MSA)是捕获远程信息的流行方法。但是,3D图像的全局MSA计算具有较高的计算成本。在这项工作中,我们提出了一个有效的空间和渠道编码器变压器Spach Transformer,可以基于本地和全局MSA来利用空间和渠道信息。基于不同宠物示踪剂数据集的实验,即$^{18} $ f-fdg,$^{18} $ f-acbc,$^{18} $ f-dcfpyl,$ f-dcfpyl和$^{68} $ ga--进行了Dotatate,以评估提出的框架。定量结果表明,所提出的SPACH变压器可以比其他参考方法获得更好的性能。
translated by 谷歌翻译
大规模图在现实情况下无处不在,可以通过图神经网络(GNN)训练以生成下游任务的表示形式。鉴于大规模图的丰富信息和复杂的拓扑结构,我们认为在这样的图中存在冗余,并将降低训练效率。不幸的是,模型可伸缩性严重限制了通过香草GNNS训练大规模图的效率。尽管在基于抽样的培训方法方面取得了最新进展,但基于抽样的GNN通常忽略了冗余问题。在大规模图上训练这些型号仍然需要无法容忍的时间。因此,我们建议通过重新思考图中的固有特征来降低冗余并提高使用GNN的大规模训练效率。在本文中,我们开拓者提出了一种称为dropreef的曾经使用的方法,以在大规模图中删除冗余。具体而言,我们首先进行初步实验,以探索大规模图中的潜在冗余。接下来,我们提出一个度量标准,以量化图中所有节点的异质性。基于实验和理论分析,我们揭示了大规模图中的冗余,即具有高邻居异质的节点和大量邻居。然后,我们建议Dropreef一劳永逸地检测并删除大规模图中的冗余,以帮助减少训练时间,同时确保模型准确性没有牺牲。为了证明DropReef的有效性,我们将其应用于最新的基于最新的采样GNN,用于训练大规模图,这是由于此类模型的高精度。使用Dropreef杠杆,可以大力提高模型的训练效率。 Dropreef高度兼容,并且在离线上执行,从而在很大程度上使目前和未来的最新采样GNN受益。
translated by 谷歌翻译
我们提出了一个基于串联弹性执行器(SEA)的平行按摩机器人,提供统一的力量控制方法。首先,建立了运动和静态力模型,以获得相应的控制变量。然后,提出了一种新型的力位控制策略,以在不需要机器人动力学模型的情况下分别控制沿表面正常方向的力位和另一个两方向位移。为了评估其性能,我们实施了一系列机器人按摩实验。结果表明,所提出的按摩操纵器可以成功实现按摩任务的所需力和运动模式,从而达到高得分用户体验。
translated by 谷歌翻译
本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
异质图神经网络(HGNN)提供了强大的能力,可以将异质图的丰富结构和语义信息嵌入到低维节点表示中。现有的HGNN通常会学习使用层次结构注意机制和重复的邻居聚集来嵌入信息,并遭受不必要的复杂性和冗余计算。本文提出了简单有效的异质图神经网络(SEHGNN),该图通过避免在相同关系中避免过度使用的节点级别的注意来降低这种过度的复杂性,并在预处理阶段预先计算邻居聚集。与以前的工作不同,Sehgnn利用轻重量参数的邻居聚合器来学习每个Metapath的结构信息,以及一个基于变压器的语义聚合器将跨Metapaths的语义信息组合为每个节点的最终嵌入。结果,SEHGNN提供了简单的网络结构,高预测准确性和快速训练速度。在五个现实世界的异质图上进行了广泛的实验,证明了Sehgnn在准确性和训练速度上的优越性。代码可在https://github.com/ict-gimlab/sehgnn上找到。
translated by 谷歌翻译
神经体系结构搜索方法寻求具有有效的体重共享超级网训练的最佳候选者。但是,最近的研究表明,关于独立架构和共享重量网络之间的性能的排名一致性差。在本文中,我们提出了提前引导的一声NAS(PGONA),以加强超级网的排名相关性。具体而言,我们首先探讨激活功能的效果,并提出基于三明治规则的平衡采样策略,以减轻超级网中的重量耦合。然后,采用了拖鞋和禅宗得分来指导超级网的训练,并具有排名相关性损失。我们的PGONA在CVPR2022第二轻型NAS挑战赛的SuperNet轨道中排名第三。代码可在https://github.com/pprp/cvpr2022-nas?competition-track1-3th-solution中找到。
translated by 谷歌翻译
$ \ texttt {gcastle} $是一个端到端Python工具箱,用于因果结构学习。它提供了从模拟器或现实世界数据集的生成数据,从数据学习因果结构的功能,以及评估学到的图表,以及有用的实践,例如先验知识插入,初步邻域选择和后处理以删除错误发现。与相关包相比,$ \ texttt {gcastle} $包括许多最近开发的基于渐变的因果发现方法,具有可选的GPU加速。$ \ texttt {gcastle} $为可以直接尝试代码以及具有图形用户干扰的从业者来为研究人员提供方便。当前版本也提供了电信中的三个现实世界数据集。$ \ texttt {gcastle} $可在Apache许可证2.0下获得\ url {https://github.com/huawei-noah/trustworthyai/tree/master/gcastle}。
translated by 谷歌翻译
视觉变形金刚(VITS)引起了对计算机视觉任务的卓越性能的关注。为解决单级低分辨率表示的限制,先前的工作适用于具有分层体系结构的高分辨率密集预测任务,以生成金字塔功能。然而,考虑到其分类的顺序拓扑,仍然对VITS探索多种表达学习。在这项工作中提高具有更多能力的VITS来学习语义和空间精确的多尺度表示,我们展示了高分辨率多分支架构的高分辨率多分支架构,带有视觉变压器,称为HRVIT,推动静脉前沿预测任务到新级别。我们探索异构分支设计,降低线性层中的冗余,并增加模型非线性以平衡模型性能和硬件效率。拟议的HRVIT在ADE20K上达到50.20%的Miou,83.16%Miou,用于语义细分任务,超过最先进的麻省理工学院和克斯犬,平均+1.78 miou改善,参数减少28%和21%拖鞋,展示HRVIT作为强大视力骨架的潜力。
translated by 谷歌翻译