鉴于大量的跨境流量,对行业的有效和有效控制对于保护人和社会免受非法行业的影响而在促进合法交易的同时变得更加重要。但是,交易级贸易数据集的有限可访问性阻碍了公开研究的进展,许多海关管理部门并未受益于基于数据的风险管理的最新进展。在本文中,我们介绍了一个进口声明数据集,以促进海关管理部门和数据科学研究人员领域专家之间的合作。该数据集包含54,000个具有22个关键属性的人为产生的交易,并且在维护相关功能的同时与CTGAN合成。合成数据具有多个优点。首先,释放数据集没有限制,这些限制不允许披露原始的导入数据。其次,制造步骤最大程度地减少了贸易统计中可能存在的身份风险。最后,已发布的数据遵循与源数据相似的分布,因此可以在各种下游任务中使用。通过提供数据及其生成过程,我们为欺诈检测任务打开基线代码,因为我们从经验上表明,更高级的算法可以更好地检测欺诈。
translated by 谷歌翻译
当将同时映射和本地化(SLAM)调整到现实世界中的应用程序(例如自动驾驶汽车,无人机和增强现实设备)时,其内存足迹和计算成本是限制性能和应用程序范围的两个主要因素。在基于稀疏特征的SLAM算法中,解决此问题的一种有效方法是通过选择可能对本地和全局捆绑捆绑调整(BA)有用的点来限制地图点大小。这项研究提出了用于大量系统中稀疏地图点的有效图优化。具体而言,我们将最大姿势可见度和最大空间多样性问题作为最小成本最大流量图优化问题。提出的方法是现有SLAM系统的附加步骤,因此可以在常规或基于学习的SLAM系统中使用。通过广泛的实验评估,我们证明了所提出的方法以大约1/3的MAP点和1/2的计算实现了更准确的相机姿势。
translated by 谷歌翻译
分配和验证国际公认的商品代码(HS编码)的任务是贸易货物的是海关办公室的关键职能之一。这一决定对于进口商和出口商至关重要,因为它决定了关税率。但是,类似于法官作出的法院决定,即使对于经验丰富的海关官员,任务也可能是非琐碎的。目前的论文提出了一个深入的学习模式,以协助这一看似挑战HS代码分类。与韩国海关服务一起,我们建立了基于科电的决策模型,该决策模型建议了HS代码的最有可能的标题和副标题(即,前四位和六位数)。在129,084件之前的情况下评估显示,我们模型的前3个建议在分类265个副标题方面的准确性为95.5%。这个有希望的结果意味着算法可以通过协助HS代码分类任务来减少海关官员所采取的时间和精力。
translated by 谷歌翻译
The automated segmentation and tracking of macrophages during their migration are challenging tasks due to their dynamically changing shapes and motions. This paper proposes a new algorithm to achieve automatic cell tracking in time-lapse microscopy macrophage data. First, we design a segmentation method employing space-time filtering, local Otsu's thresholding, and the SUBSURF (subjective surface segmentation) method. Next, the partial trajectories for cells overlapping in the temporal direction are extracted in the segmented images. Finally, the extracted trajectories are linked by considering their direction of movement. The segmented images and the obtained trajectories from the proposed method are compared with those of the semi-automatic segmentation and manual tracking. The proposed tracking achieved 97.4% of accuracy for macrophage data under challenging situations, feeble fluorescent intensity, irregular shapes, and motion of macrophages. We expect that the automatically extracted trajectories of macrophages can provide pieces of evidence of how macrophages migrate depending on their polarization modes in the situation, such as during wound healing.
translated by 谷歌翻译
Data-centric AI has shed light on the significance of data within the machine learning (ML) pipeline. Acknowledging its importance, various research and policies are suggested by academia, industry, and government departments. Although the capability of utilizing existing data is essential, the capability to build a dataset has become more important than ever. In consideration of this trend, we propose a "Data Management Operation and Recipes" that will guide the industry regardless of the task or domain. In other words, this paper presents the concept of DMOps derived from real-world experience. By offering a baseline for building data, we want to help the industry streamline its data operation optimally.
translated by 谷歌翻译
According to the rapid development of drone technologies, drones are widely used in many applications including military domains. In this paper, a novel situation-aware DRL- based autonomous nonlinear drone mobility control algorithm in cyber-physical loitering munition applications. On the battlefield, the design of DRL-based autonomous control algorithm is not straightforward because real-world data gathering is generally not available. Therefore, the approach in this paper is that cyber-physical virtual environment is constructed with Unity environment. Based on the virtual cyber-physical battlefield scenarios, a DRL-based automated nonlinear drone mobility control algorithm can be designed, evaluated, and visualized. Moreover, many obstacles exist which is harmful for linear trajectory control in real-world battlefield scenarios. Thus, our proposed autonomous nonlinear drone mobility control algorithm utilizes situation-aware components those are implemented with a Raycast function in Unity virtual scenarios. Based on the gathered situation-aware information, the drone can autonomously and nonlinearly adjust its trajectory during flight. Therefore, this approach is obviously beneficial for avoiding obstacles in obstacle-deployed battlefields. Our visualization-based performance evaluation shows that the proposed algorithm is superior from the other linear mobility control algorithms.
translated by 谷歌翻译
This paper proposes a new regularization algorithm referred to as macro-block dropout. The overfitting issue has been a difficult problem in training large neural network models. The dropout technique has proven to be simple yet very effective for regularization by preventing complex co-adaptations during training. In our work, we define a macro-block that contains a large number of units from the input to a Recurrent Neural Network (RNN). Rather than applying dropout to each unit, we apply random dropout to each macro-block. This algorithm has the effect of applying different drop out rates for each layer even if we keep a constant average dropout rate, which has better regularization effects. In our experiments using Recurrent Neural Network-Transducer (RNN-T), this algorithm shows relatively 4.30 % and 6.13 % Word Error Rates (WERs) improvement over the conventional dropout on LibriSpeech test-clean and test-other. With an Attention-based Encoder-Decoder (AED) model, this algorithm shows relatively 4.36 % and 5.85 % WERs improvement over the conventional dropout on the same test sets.
translated by 谷歌翻译
Affect understanding capability is essential for social robots to autonomously interact with a group of users in an intuitive and reciprocal way. However, the challenge of multi-person affect understanding comes from not only the accurate perception of each user's affective state (e.g., engagement) but also the recognition of the affect interplay between the members (e.g., joint engagement) that presents as complex, but subtle, nonverbal exchanges between them. Here we present a novel hybrid framework for identifying a parent-child dyad's joint engagement by combining a deep learning framework with various video augmentation techniques. Using a dataset of parent-child dyads reading storybooks together with a social robot at home, we first train RGB frame- and skeleton-based joint engagement recognition models with four video augmentation techniques (General Aug, DeepFake, CutOut, and Mixed) applied datasets to improve joint engagement classification performance. Second, we demonstrate experimental results on the use of trained models in the robot-parent-child interaction context. Third, we introduce a behavior-based metric for evaluating the learned representation of the models to investigate the model interpretability when recognizing joint engagement. This work serves as the first step toward fully unlocking the potential of end-to-end video understanding models pre-trained on large public datasets and augmented with data augmentation and visualization techniques for affect recognition in the multi-person human-robot interaction in the wild.
translated by 谷歌翻译
Training agents via off-policy deep reinforcement learning (RL) requires a large memory, named replay memory, that stores past experiences used for learning. These experiences are sampled, uniformly or non-uniformly, to create the batches used for training. When calculating the loss function, off-policy algorithms assume that all samples are of the same importance. In this paper, we hypothesize that training can be enhanced by assigning different importance for each experience based on their temporal-difference (TD) error directly in the training objective. We propose a novel method that introduces a weighting factor for each experience when calculating the loss function at the learning stage. In addition to improving convergence speed when used with uniform sampling, the method can be combined with prioritization methods for non-uniform sampling. Combining the proposed method with prioritization methods improves sampling efficiency while increasing the performance of TD-based off-policy RL algorithms. The effectiveness of the proposed method is demonstrated by experiments in six environments of the OpenAI Gym suite. The experimental results demonstrate that the proposed method achieves a 33%~76% reduction of convergence speed in three environments and an 11% increase in returns and a 3%~10% increase in success rate for other three environments.
translated by 谷歌翻译
Neural fields, also known as coordinate-based or implicit neural representations, have shown a remarkable capability of representing, generating, and manipulating various forms of signals. For video representations, however, mapping pixel-wise coordinates to RGB colors has shown relatively low compression performance and slow convergence and inference speed. Frame-wise video representation, which maps a temporal coordinate to its entire frame, has recently emerged as an alternative method to represent videos, improving compression rates and encoding speed. While promising, it has still failed to reach the performance of state-of-the-art video compression algorithms. In this work, we propose FFNeRV, a novel method for incorporating flow information into frame-wise representations to exploit the temporal redundancy across the frames in videos inspired by the standard video codecs. Furthermore, we introduce a fully convolutional architecture, enabled by one-dimensional temporal grids, improving the continuity of spatial features. Experimental results show that FFNeRV yields the best performance for video compression and frame interpolation among the methods using frame-wise representations or neural fields. To reduce the model size even further, we devise a more compact convolutional architecture using the group and pointwise convolutions. With model compression techniques, including quantization-aware training and entropy coding, FFNeRV outperforms widely-used standard video codecs (H.264 and HEVC) and performs on par with state-of-the-art video compression algorithms.
translated by 谷歌翻译