通过深度学习技术的开花,完全有监督的基于骨架的动作识别取得了巨大进步。但是,这些方法需要足够的标记数据,这不容易获得。相比之下,基于自我监督的骨骼的动作识别引起了更多的关注。通过利用未标记的数据,可以学会更多可概括的功能来减轻过度拟合的问题并减少大规模标记的培训数据的需求。受到MAE的启发,我们提出了一个空间式蒙面的自动编码器框架,用于基于3D骨架的自我监管的动作识别(Skeletonmae)。在MAE的掩蔽和重建管道之后,我们利用基于骨架的编码器变压器体系结构来重建蒙版的骨架序列。一种新颖的掩蔽策略,称为时空掩蔽,是根据骨架序列的联合级别和框架级别引入的。这种预训练策略使编码器输出可推广的骨骼特征具有空间和时间依赖性。给定未掩盖的骨架序列,编码器用于动作识别任务。广泛的实验表明,我们的骨架达到了出色的性能,并优于NTU RGB+D和NTU RGB+D 120数据集的最新方法。
translated by 谷歌翻译
This paper presents a practical global optimization algorithm for the K-center clustering problem, which aims to select K samples as the cluster centers to minimize the maximum within-cluster distance. This algorithm is based on a reduced-space branch and bound scheme and guarantees convergence to the global optimum in a finite number of steps by only branching on the regions of centers. To improve efficiency, we have designed a two-stage decomposable lower bound, the solution of which can be derived in a closed form. In addition, we also propose several acceleration techniques to narrow down the region of centers, including bounds tightening, sample reduction, and parallelization. Extensive studies on synthetic and real-world datasets have demonstrated that our algorithm can solve the K-center problems to global optimal within 4 hours for ten million samples in the serial mode and one billion samples in the parallel mode. Moreover, compared with the state-of-the-art heuristic methods, the global optimum obtained by our algorithm can averagely reduce the objective function by 25.8% on all the synthetic and real-world datasets.
translated by 谷歌翻译
Previous work has shown the potential of deep learning to predict renal obstruction using kidney ultrasound images. However, these image-based classifiers have been trained with the goal of single-visit inference in mind. We compare methods from video action recognition (i.e. convolutional pooling, LSTM, TSM) to adapt single-visit convolutional models to handle multiple visit inference. We demonstrate that incorporating images from a patient's past hospital visits provides only a small benefit for the prediction of obstructive hydronephrosis. Therefore, inclusion of prior ultrasounds is beneficial, but prediction based on the latest ultrasound is sufficient for patient risk stratification.
translated by 谷歌翻译
The core operation of current Graph Neural Networks (GNNs) is the aggregation enabled by the graph Laplacian or message passing, which filters the neighborhood information of nodes. Though effective for various tasks, in this paper, we show that they are potentially a problematic factor underlying all GNN models for learning on certain datasets, as they force the node representations similar, making the nodes gradually lose their identity and become indistinguishable. Hence, we augment the aggregation operations with their dual, i.e. diversification operators that make the node more distinct and preserve the identity. Such augmentation replaces the aggregation with a two-channel filtering process that, in theory, is beneficial for enriching the node representations. In practice, the proposed two-channel filters can be easily patched on existing GNN methods with diverse training strategies, including spectral and spatial (message passing) methods. In the experiments, we observe desired characteristics of the models and significant performance boost upon the baselines on 9 node classification tasks.
translated by 谷歌翻译
Ramp merging is a typical application of cooperative intelligent transportation system (C-ITS). Vehicle trajectories perceived by roadside sensors are importation complement to the limited visual field of on-board perception. Vehicle tracking and trajectory denoising algorithm is proposed in this paper to take full advantage of roadside cameras for vehicle trajectory and speed profile estimation. Dynamic speed guidance algorithm is proposed to help on-ramp vehicles to merge into mainline smoothly, even in non-cooperative environment where mainline vehicles are not expected to slow down to accommodate on-ramp vehicles. On-site experiments were taken out in a merging area of Hangzhou Belt Highway to testify our prototype system, and simulation analysis shows our proposed algorithm can achieve significant fuel savings during the ramp merging process.
translated by 谷歌翻译
The quality of knowledge retrieval is crucial in knowledge-intensive conversations. Two common strategies to improve the retrieval quality are finetuning the retriever or generating a self-contained query, while they encounter heavy burdens on expensive computation and elaborate annotations. In this paper, we propose an unsupervised query enhanced approach for knowledge-intensive conversations, namely QKConv. There are three modules in QKConv: a query generator, an off-the-shelf knowledge selector, and a response generator. Without extra supervision, the end-to-end joint training of QKConv explores multiple candidate queries and utilizes corresponding selected knowledge to yield the target response. To evaluate the effectiveness of the proposed method, we conducted comprehensive experiments on conversational question-answering, task-oriented dialogue, and knowledge-grounded conversation. Experimental results demonstrate that QKConv achieves state-of-the-art performance compared to unsupervised methods and competitive performance compared to supervised methods.
translated by 谷歌翻译
Negotiation is one of the crucial abilities in human communication, and there has been a resurgent research interest in negotiation dialogue systems recently, which goal is to empower intelligent agents with such ability that can efficiently help humans resolve conflicts or reach beneficial agreements. Although there have been many explorations in negotiation dialogue systems, a systematic review of this task has to date remained notably absent. To this end, we aim to fill this gap by reviewing contemporary studies in the emerging field of negotiation dialogue systems, covering benchmarks, evaluations, and methodologies. Furthermore, we also discuss potential future directions, including multi-modal, multi-party, and cross-cultural negotiation scenarios. Our goal is to provide the community with a systematic overview of negotiation dialogue systems and to inspire future research.
translated by 谷歌翻译
The application of Natural Language Processing (NLP) to specialized domains, such as the law, has recently received a surge of interest. As many legal services rely on processing and analyzing large collections of documents, automating such tasks with NLP tools emerges as a key challenge. Many popular language models, such as BERT or RoBERTa, are general-purpose models, which have limitations on processing specialized legal terminology and syntax. In addition, legal documents may contain specialized vocabulary from other domains, such as medical terminology in personal injury text. Here, we propose LegalRelectra, a legal-domain language model that is trained on mixed-domain legal and medical corpora. We show that our model improves over general-domain and single-domain medical and legal language models when processing mixed-domain (personal injury) text. Our training architecture implements the Electra framework, but utilizes Reformer instead of BERT for its generator and discriminator. We show that this improves the model's performance on processing long passages and results in better long-range text comprehension.
translated by 谷歌翻译
Software engineers working with the same programming language (PL) may speak different natural languages (NLs) and vice versa, erecting huge barriers to communication and working efficiency. Recent studies have demonstrated the effectiveness of generative pre-training in computer programs, yet they are always English-centric. In this work, we step towards bridging the gap between multilingual NLs and multilingual PLs for large language models (LLMs). We release ERNIE-Code, a unified pre-trained language model for 116 NLs and 6 PLs. We employ two methods for universal cross-lingual pre-training: span-corruption language modeling that learns patterns from monolingual NL or PL; and pivot-based translation language modeling that relies on parallel data of many NLs and PLs. Extensive results show that ERNIE-Code outperforms previous multilingual LLMs for PL or NL across a wide range of end tasks of code intelligence, including multilingual code-to-text, text-to-code, code-to-code, and text-to-text generation. We further show its advantage of zero-shot prompting on multilingual code summarization and text-to-text translation. We will make our code and pre-trained models publicly available.
translated by 谷歌翻译
Image-based head swapping task aims to stitch a source head to another source body flawlessly. This seldom-studied task faces two major challenges: 1) Preserving the head and body from various sources while generating a seamless transition region. 2) No paired head swapping dataset and benchmark so far. In this paper, we propose an image-based head swapping framework (HS-Diffusion) which consists of a semantic-guided latent diffusion model (SG-LDM) and a semantic layout generator. We blend the semantic layouts of source head and source body, and then inpaint the transition region by the semantic layout generator, achieving a coarse-grained head swapping. SG-LDM can further implement fine-grained head swapping with the blended layout as condition by a progressive fusion process, while preserving source head and source body with high-quality reconstruction. To this end, we design a head-cover augmentation strategy for training and a neck alignment trick for geometric realism. Importantly, we construct a new image-based head swapping benchmark and propose two tailor-designed metrics (Mask-FID and Focal-FID). Extensive experiments demonstrate the superiority of our framework. The code will be available: https://github.com/qinghew/HS-Diffusion.
translated by 谷歌翻译