Recent CLIP-guided 3D optimization methods, e.g., DreamFields and PureCLIPNeRF achieve great success in zero-shot text-guided 3D synthesis. However, due to the scratch training and random initialization without any prior knowledge, these methods usually fail to generate accurate and faithful 3D structures that conform to the corresponding text. In this paper, we make the first attempt to introduce the explicit 3D shape prior to CLIP-guided 3D optimization methods. Specifically, we first generate a high-quality 3D shape from input texts in the text-to-shape stage as the 3D shape prior. We then utilize it as the initialization of a neural radiance field and then optimize it with the full prompt. For the text-to-shape generation, we present a simple yet effective approach that directly bridges the text and image modalities with a powerful text-to-image diffusion model. To narrow the style domain gap between images synthesized by the text-to-image model and shape renderings used to train the image-to-shape generator, we further propose to jointly optimize a learnable text prompt and fine-tune the text-to-image diffusion model for rendering-style image generation. Our method, namely, Dream3D, is capable of generating imaginative 3D content with better visual quality and shape accuracy than state-of-the-art methods.
translated by 谷歌翻译
We present a unified hard-constraint framework for solving geometrically complex PDEs with neural networks, where the most commonly used Dirichlet, Neumann, and Robin boundary conditions (BCs) are considered. Specifically, we first introduce the "extra fields" from the mixed finite element method to reformulate the PDEs so as to equivalently transform the three types of BCs into linear forms. Based on the reformulation, we derive the general solutions of the BCs analytically, which are employed to construct an ansatz that automatically satisfies the BCs. With such a framework, we can train the neural networks without adding extra loss terms and thus efficiently handle geometrically complex PDEs, alleviating the unbalanced competition between the loss terms corresponding to the BCs and PDEs. We theoretically demonstrate that the "extra fields" can stabilize the training process. Experimental results on real-world geometrically complex PDEs showcase the effectiveness of our method compared with state-of-the-art baselines.
translated by 谷歌翻译
在离线增强学习中,加权回归是一种常见方法,可以确保学习的政策与行为策略保持接近并防止选择样本外动作。在这项工作中,我们表明,由于政策模型的分配表达有限,以前的方法可能仍会在培训期间选择看不见的动作,这会偏离其最初动机。为了解决这个问题,我们通过将学习的政策分解为两个部分:表达生成行为模型和动作评估模型,采用生成方法。关键见解是,这种去耦避免学习具有封闭形式表达式的明确参数化的策略模型。直接学习行为策略使我们能够利用生成建模的现有进步,例如基于扩散的方法,以建模各种行为。至于行动评估,我们将方法与样本中的计划技术相结合,以进一步避免选择样本外动作并提高计算效率。 D4RL数据集的实验结果表明,与最先进的离线RL方法相比,我们提出的方法具有竞争性或卓越的性能,尤其是在诸如Antmaze之类的复杂任务中。我们还经验证明,我们的方法可以从包含多个独特但类似成功策略的异质数据集中成功学习,而以前的单峰政策失败了。
translated by 谷歌翻译
在智能系统(例如自动驾驶和机器人导航)中,轨迹预测一直是一个长期存在的问题。最近在大规模基准测试的最新模型一直在迅速推动性能的极限,主要集中于提高预测准确性。但是,这些模型对效率的强调较少,这对于实时应用至关重要。本文提出了一个名为Gatraj的基于注意力的图形模型,其预测速度要高得多。代理的时空动力学,例如行人或车辆,是通过注意机制建模的。代理之间的相互作用是通过图卷积网络建模的。我们还实施了拉普拉斯混合物解码器,以减轻模式崩溃,并为每个代理生成多种模式预测。我们的模型以在多个开放数据集上测试的更高预测速度与最先进的模型相同的性能。
translated by 谷歌翻译
基于深度学习的方法,例如物理知识的神经网络(PINN)和DeepOnets已显示出解决PDE受约束优化(PDECO)问题的希望。但是,现有方法不足以处理对优化目标具有复杂或非线性依赖性的PDE约束。在本文中,我们提出了一个新颖的双层优化框架,以通过将目标和约束的优化解耦来解决挑战。对于内部循环优化,我们采用PINN仅解决PDE约束。对于外循环,我们通过基于隐式函数定理(IFT)使用Broyden的方法来设计一种新颖的方法,该方法对于近似高度级别而言是有效且准确的。我们进一步介绍了高度级计算的理论解释和误差分析。在多个大规模和非线性PDE约束优化问题上进行了广泛的实验表明,与强基础相比,我们的方法可实现最新的结果。
translated by 谷歌翻译
本文介绍了Davarocr,这是一种用于OCR和文档理解任务的开源工具箱。Davarocr目前实施19种高级算法,涵盖9个不同的任务表。Davarocr为每种算法提供了详细的用法说明和经过训练的模型。与以前的OpenSource OCR工具箱相比,Davarocr对文档理解的尖端技术的子任务具有相对完整的支持。为了促进OCR技术在学术界和行业中的开发和应用,我们更加关注使用不同的技术可以共享的模块的使用。Davarocr在https://github.com/hikopensource/davar-lab-ocr上公开发行。
translated by 谷歌翻译
端到端的文本发现最近由于其对全球优化的好处和对实际应用的高可维护性而引起了极大的关注。但是,输入量表一直是一个艰难的权衡,因为认识到一个小的文本实例通常需要扩大整个图像,从而带来了高度的计算成本。在本文中,为了解决这个问题,我们提出了一种新颖的成本效益动态低分辨率蒸馏(DLD)文本斑点框架,该框架旨在推断出不同的小但可识别的分辨率中的图像,并在准确性和效率之间取得更好的平衡。具体而言,我们采用一个分辨率选择器来动态地确定不同图像的输入分辨率,这是通过推理准确性和计算成本来限制的。在文本识别分支上进行了另一种顺序知识蒸馏策略,使低分辨率输入获得与高分辨率图像相当的性能。可以在任何当前文本斑点框架中采用提出的方法,并在任何文本斑点框架中采用以提高可实用性。对几个文本斑点基准测试的广泛实验表明,所提出的方法极大地提高了低分辨率模型的可用性。该代码可从https://github.com/hikopensource/davar-lab-ocr/获得。
translated by 谷歌翻译
弱监督的视听暴力检测旨在区分包含带有视频级标签的多模式暴力事件的片段。许多先前的作品以早期或中间的方式执行视听整合和互动,但在弱监督的设置上忽略了模态异质性。在本文中,我们分析了多种实例学习(MIL)程序的模式异步和未分化的实例现象,并进一步研究了其对弱监督视听学习的负面影响。为了解决这些问题,我们提出了一种以自我验证(MACIL-SD)策略学习的方式感知的对比实例。具体而言,我们利用轻量级的两流网络来生成音频和视觉袋,其中单峰背景,暴力和普通实例以一种无监督的方式聚集到半袋中。然后,将音频和视觉剧烈的半袋表示作为正对组装,将暴力半袋与背景和正常实例相结合,以对比性负对。此外,将自我验证模块应用于将单峰视觉知识传输到视听模型,该模型减轻了噪音并缩小单峰和多模式特征之间的语义差距。实验表明,我们的框架在大规模XD-Violence数据集上的复杂性较低的方法优于先前的方法。结果还表明,我们提出的方法可以用作增强其他网络的插件模块。代码可在https://github.com/justinyuu/macil_sd上找到。
translated by 谷歌翻译
具有大尺度图像文本对的视觉预训练(VLP)在各个领域都表现出卓越的性能。但是,Internet上的图像文本对共存通常缺乏明确的对齐信息,这对于VLP来说是次优的。建议采用现成的对象检测器来利用其他图像标签信息。但是,对象检测器是耗时的,只能识别预定义的对象类别,从而限制了模型容量。受到观察的启发,即文本包含不完整的细粒图像信息,我们介绍了Ideas,该想法代表通过在线多标签识别VLP来增加文本多样性。想法表明,可以在VLP期间共同优化从文本中提取的图像标签的多标签学习。此外,想法可以在线识别有价值的图像标签,以提供更明确的文本监督。全面的实验表明,想法可以显着提高多个下游数据集上的性能,并具有较小的额外计算成本。
translated by 谷歌翻译
在恶劣天气下的图像修复是一项艰巨的任务。过去的大多数作品都集中在消除图像中的雨水和阴霾现象。但是,雪也是一种极为普遍的大气现象,它将严重影响高级计算机视觉任务的性能,例如对象检测和语义分割。最近,已经提出了一些用于降雪的方法,大多数方法直接将雪图像作为优化对象。但是,雪地点和形状的分布很复杂。因此,未能有效地检测雪花 /雪连胜将影响降雪并限制模型性能。为了解决这些问题,我们提出了一个雪地掩模的自适应残留网络(SMGARN)。具体而言,SMGARN由三个部分组成,即Mask-Net,Guidance-Fusion Network(GF-NET)和重建-NET。首先,我们构建了一个以自像素的注意(SA)和跨像素的注意(CA),以捕获雪花的特征并准确地定位了雪的位置,从而预测了准确的雪山。其次,预测的雪面被发送到专门设计的GF-NET中,以适应指导模型去除雪。最后,使用有效的重建网络来消除面纱效果并纠正图像以重建最终的无雪图像。广泛的实验表明,我们的SMGARN数值优于所有现有的降雪方法,并且重建的图像在视觉对比度上更清晰。所有代码都将可用。
translated by 谷歌翻译