The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
本文介绍了Lingjing团队在NLPCC-2022-Shared-Task-4多模式对话理解和发电(MDUG)中的实验方案。MDUG任务可以分为两个阶段:多模式上下文理解和响应生成。为了充分利用视觉信息以获得场景的理解和对话的生成,我们提出了MDUG任务的场景感知提示。具体而言,我们利用多任务策略共同建模场景和会话多模式的理解。采用视觉标题来了解场景信息,而基于场景和会话感知标签的固定类型的模板提示则用于进一步改善对话生成性能。广泛的实验结果表明,与其他竞争方法相比,所提出的方法已经达到了最先进的(SOTA)性能,在此MDUG竞争中,我们在所有三个子任务中排名1-ST。
translated by 谷歌翻译
抗癌药物的发现是偶然的,我们试图介绍开放的分子图学习基准,称为Cantidrug4cancer,这是一个具有挑战性且逼真的基准数据集,可促进可扩展,健壮和可重复的图形机器学习用于抗癌药物发现的机器学习研究。候选物4CANCER数据集涵盖了多个最多的癌症靶标,涵盖了54869个与癌症相关的药物分子,其范围从临床前,临床和FDA批准的范围内。除了构建数据集外,我们还使用描述符和表达性图神经网络进行了有效的药物靶点相互作用(DTI)预测基准的基准实验。实验结果表明,候选物4Cancer在实际应用中对学习分子图和目标提出了重大挑战,这表明将来有机会开发用于治疗癌症的候选药物的研究。
translated by 谷歌翻译
打开世界对象检测(OWOD),模拟知识持续增长的真正动态世界,试图检测已知和未知的类别,并逐步学习所识别的未知组。我们发现,尽管以前的欧瓦德工作建设性地提出了OWOD定义,但实验设置与不合逻辑的基准,令人困惑的度量计算和不当方法是不合理的。在本文中,我们重新思考OWOD实验环境,并提出了五项基本基准原则,以指导OWOD基准建设。此外,我们设计了两个特定于OWOD问题的公平评估协议,从未知课程的角度填充了评估的空白。此外,我们介绍了一个新颖且有效的OWOD框架,其中包含辅助提案顾问(PAD)和特定于类驱逐分类器(CEC)。非参数垫可以帮助RPN识别无需监控的准确未知提案,而CEC通过特定于类的驱逐函数校准过自信的激活边界并滤除令人困惑的预测。在我们的公平基准上进行的综合实验表明,我们的方法在现有的和我们的新指标方面表明了其他最先进的对象检测方法。\脚注{我们的基准和代码可在https://github.com提供/重新驱动/重新驱动。
translated by 谷歌翻译
虽然许多基于图类的聚类方法尝试在其目标中模拟静止扩散状态,但它们对使用预定义的图形的性能限制。我们认为静止扩散状态的估计可以通过神经网络梯度下降来实现。我们专门设计静止扩散状态神经估计(SDSNE)以利用共同监督学习的多视图结构图信息。我们探索如何专门为无监视的多视图学习设计一个图形神经网络,并将多个图形集成到统一的自我注意力模块中。视图共享的自我注意模块利用图形结构来学习视图 - 一致的全局图。同时,而不是在大多数无监督的学习图形神经网络中使用自动编码器,SDSNE使用具有结构信息的共同监督策略来监督模型学习。作为损失函数指导SDSNE实现静止状态的共同监督策略。在丢失和自我注意模块的帮助下,我们学习获得一个图表,其中每个连接的组件中的节点完全连接到相同的重量。几种多视图数据集的实验证明了六种聚类评估指标的SDSNE的有效性。
translated by 谷歌翻译
自我监督的学习逐渐被出现为一种强大的图形表示学习技术。然而,在图表数据上进行可转换,概括和强大的表示学习仍然是对预训练图形神经网络的挑战。在本文中,我们提出了一种简单有效的自我监督的自我监督的预训练策略,命名为成对半图歧视(PHD),明确地预先在图形级别进行了图形神经网络。 PHD被设计为简单的二进制分类任务,以辨别两个半图是否来自同一源。实验表明,博士学位是一种有效的预训练策略,与最先进的策略相比,在13图分类任务上提供了可比或优越的性能,并在与节点级策略结合时实现了显着的改进。此外,所学习代表的可视化透露,博士策略确实赋予了模型来学习像分子支架等图形级知识。这些结果已将博士学位作为图形级别代表学习中的强大有效的自我监督的学习策略。
translated by 谷歌翻译
通过整合人类的知识和经验,人在循环旨在以最低成本培训准确的预测模型。人类可以为机器学习应用提供培训数据,并直接完成在基于机器的方法中对管道中计算机中的难以实现的任务。在本文中,我们从数据的角度调查了人类循环的现有工作,并将它们分为三类具有渐进关系:(1)从数据处理中提高模型性能的工作,(2)通过介入模型培训提高模型性能,(3)系统的设计独立于循环的设计。使用上述分类,我们总结了该领域的主要方法;随着他们的技术优势/弱点以及自然语言处理,计算机愿景等的简单分类和讨论。此外,我们提供了一些开放的挑战和机遇。本调查打算为人类循环提供高级别的摘要,并激励有兴趣的读者,以考虑设计有效的循环解决方案的方法。
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
Deep learning-based 3D object detectors have made significant progress in recent years and have been deployed in a wide range of applications. It is crucial to understand the robustness of detectors against adversarial attacks when employing detectors in security-critical applications. In this paper, we make the first attempt to conduct a thorough evaluation and analysis of the robustness of 3D detectors under adversarial attacks. Specifically, we first extend three kinds of adversarial attacks to the 3D object detection task to benchmark the robustness of state-of-the-art 3D object detectors against attacks on KITTI and Waymo datasets, subsequently followed by the analysis of the relationship between robustness and properties of detectors. Then, we explore the transferability of cross-model, cross-task, and cross-data attacks. We finally conduct comprehensive experiments of defense for 3D detectors, demonstrating that simple transformations like flipping are of little help in improving robustness when the strategy of transformation imposed on input point cloud data is exposed to attackers. Our findings will facilitate investigations in understanding and defending the adversarial attacks against 3D object detectors to advance this field.
translated by 谷歌翻译
When a large language model (LLM) performs complex reasoning by chain of thought (CoT), it can be highly sensitive to individual mistakes. We have had to train verifiers to address this issue. As we all know, after human inferring a conclusion, they often check it by re-verifying it, which can avoid some mistakes. We propose a new method called self-verification that uses the conclusion of the CoT as a condition to build a new sample and asks the LLM to re-predict the original conditions which be masked. We calculate an explainable verification score based on the accuracy. This method can improve the accuracy of multiple arithmetics and logical reasoning datasets when using few-shot learning. we have demonstrated that LLMs can conduct explainable self-verification of their own conclusions and achieve competitive reasoning performance. Extensive experimentals have demonstrated that our method can help multiple large language models with self-verification can avoid interference from incorrect CoT. Code is available at \url{https://github.com/WENGSYX/Self-Verification}
translated by 谷歌翻译