Recent advances in self-supervised learning (SSL) in computer vision are primarily comparative, whose goal is to preserve invariant and discriminative semantics in latent representations by comparing siamese image views. However, the preserved high-level semantics do not contain enough local information, which is vital in medical image analysis (e.g., image-based diagnosis and tumor segmentation). To mitigate the locality problem of comparative SSL, we propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics. We also address the preservation of scale information, a powerful tool in aiding image understanding but has not drawn much attention in SSL. The resulting framework can be formulated as a multi-task optimization problem on the feature pyramid. Specifically, we conduct multi-scale pixel restoration and siamese feature comparison in the pyramid. In addition, we propose non-skip U-Net to build the feature pyramid and develop sub-crop to replace multi-crop in 3D medical imaging. The proposed unified SSL framework (PCRLv2) surpasses its self-supervised counterparts on various tasks, including brain tumor segmentation (BraTS 2018), chest pathology identification (ChestX-ray, CheXpert), pulmonary nodule detection (LUNA), and abdominal organ segmentation (LiTS), sometimes outperforming them by large margins with limited annotations.
translated by 谷歌翻译
In this paper, we propose an end-to-end Retrieval-Augmented Visual Language Model (REVEAL) that learns to encode world knowledge into a large-scale memory, and to retrieve from it to answer knowledge-intensive queries. REVEAL consists of four key components: the memory, the encoder, the retriever and the generator. The large-scale memory encodes various sources of multimodal world knowledge (e.g. image-text pairs, question answering pairs, knowledge graph triplets, etc) via a unified encoder. The retriever finds the most relevant knowledge entries in the memory, and the generator fuses the retrieved knowledge with the input query to produce the output. A key novelty in our approach is that the memory, encoder, retriever and generator are all pre-trained end-to-end on a massive amount of data. Furthermore, our approach can use a diverse set of multimodal knowledge sources, which is shown to result in significant gains. We show that REVEAL achieves state-of-the-art results on visual question answering and image captioning.
translated by 谷歌翻译
We study a multi-agent reinforcement learning (MARL) problem where the agents interact over a given network. The goal of the agents is to cooperatively maximize the average of their entropy-regularized long-term rewards. To overcome the curse of dimensionality and to reduce communication, we propose a Localized Policy Iteration (LPI) algorithm that provably learns a near-globally-optimal policy using only local information. In particular, we show that, despite restricting each agent's attention to only its $\kappa$-hop neighborhood, the agents are able to learn a policy with an optimality gap that decays polynomially in $\kappa$. In addition, we show the finite-sample convergence of LPI to the global optimal policy, which explicitly captures the trade-off between optimality and computational complexity in choosing $\kappa$. Numerical simulations demonstrate the effectiveness of LPI.
translated by 谷歌翻译
图形神经网络(GNNS)在图表表示学习中获得了动力,并在各种领域(例如数据挖掘)(\ emph {e.g。,}社交网络分析和推荐系统),计算机视觉(\ emph {例如,}对象检测和点云学习)和自然语言处理(\ emph {e.g。,}关系提取和序列学习),仅举几例。随着自然语言处理和计算机视觉中变压器的出现,图形变压器将图形结构嵌入到变压器体系结构中,以克服局部邻域聚集的局限性,同时避免严格的结构电感偏见。在本文中,我们从面向任务的角度介绍了计算机视觉中GNN和图形变压器的全面综述。具体来说,我们根据输入数据的模式,\ emph {i.e。,} 2D自然图像,视频,3D数据,Vision +语言和医学图像,将其在计算机视觉中的应用分为五个类别。在每个类别中,我们根据一组视觉任务进一步对应用程序进行划分。这种面向任务的分类法使我们能够检查如何通过不同的基于GNN的方法以及这些方法的表现如何解决每个任务。基于必要的初步,我们提供了任务的定义和挑战,对代表性方法的深入报道以及有关见解,局限性和未来方向的讨论。
translated by 谷歌翻译
在临床实践中,放射科医生经常使用属性,例如病变的形态学和外观特征,以帮助疾病诊断。有效地建模属性以及所有涉及属性的关系可以提高医学图像诊断算法的概括能力和可验证性。在本文中,我们介绍了一种用于基于可验证属性的医学图像诊断的混合神经培养基推理算法。在我们的混合算法中,有两个平行分支,一个贝叶斯网络分支执行概率因果关系推理,图形卷积网络分支执行了使用特征表示的更通用的关系建模和推理。这两个分支之间的紧密耦合是通过跨网络注意机制及其分类结果的融合来实现的。我们已成功地将混合推理算法应用于两个具有挑战性的医学图像诊断任务。在LIDC-IDRI基准数据集上,用于CT图像中肺结核的良性恶性分类,我们的方法达到了95.36 \%的新最新精度,AUC为96.54 \%。我们的方法还可以在内部胸部X射线图像数据集上提高3.24 \%的精度,以诊断结核病。我们的消融研究表明,在非常有限的培训数据下,与纯神经网络体系结构相比,我们的混合算法的概括性能要好得多。
translated by 谷歌翻译
贝叶斯优化(BO)已成为黑框函数的顺序优化。当BO用于优化目标函数时,我们通常可以访问对潜在相关功能的先前评估。这就提出了一个问题,即我们是否可以通过元学习(meta-bo)来利用这些先前的经验来加速当前的BO任务,同时确保稳健性抵抗可能破坏BO融合的潜在有害的不同任务。本文介绍了两种可扩展且可证明的稳健元算法:稳健的元高斯过程 - 加工置信度结合(RM-GP-UCB)和RM-GP-thompson采样(RM-GP-TS)。我们证明,即使某些或所有以前的任务与当前的任务不同,这两种算法在渐近上都是无重组的,并且证明RM-GP-UCB比RM-GP-TS具有更好的理论鲁棒性。我们还利用理论保证,通过通过在线学习最大程度地减少遗憾,优化分配给各个任务的权重,从而减少了相似任务的影响,从而进一步增强了稳健性。经验评估表明,(a)RM-GP-UCB在各种应用程序中都有效,一致地性能,(b)RM-GP-TS,尽管在理论上和实践中都比RM-GP-ucb稳健,但在实践中,在竞争性中表现出色某些方案具有较小的任务,并且在计算上更有效。
translated by 谷歌翻译
有效的模型选择,用于向下游任务识别合适的预先训练的神经网络是深度学习中的基本但具有挑战性的任务。目前的实践需要昂贵的计算成本在模型训练中进行性能预测。在本文中,我们通过在训练期间分析突触连接(边缘)的控制动态来提出一个新颖的神经网络选择框架。我们的框架是基于神经网络培训期间的回波传播相当于突触连接的动态演变。因此,融合的神经网络与由那些边缘组成的网络系统的平衡状态相关联。为此,我们构建一个网络映射$ \ phi $,将神经网络$ g_a $转换为定向行图$ g_b $,它在$ g_a $中定义。接下来,我们推导出神经电容度量标准$ \ beta _ {\ rm upf} $普遍捕获下游任务上的预测措施,仅使用少数早期训练结果。我们使用17个流行的预先训练的Imagenet模型和五个基准数据集进行了广泛的实验,包括CiFar10,CiFar100,SVHN,时尚Mnist和鸟类,以评估我们框架的微调性能。我们的神经电容度量显示为仅基于早期训练结果的模型选择的强大指标,比最先进的方法更有效。
translated by 谷歌翻译
我们提出了一种新颖的框架,将3D运动重定定义任务从受控环境带到野外的场景。特别地,我们的方法能够从2D单眼视频中的字符重新靶出到3D字符,而不使用任何运动捕获系统或3D重构过程。它旨在利用巨大的在线视频,用于无监督培训,不用的3D注释或运动身体配对信息。所提出的方法是基于两种新颖的规范化操作,结构规范化和观察规范化。我们的方法训练了Canonicalization操作和派生规范化,我们的方法学会将骨架序列分解为三个独立的语义子空间,即运动,结构和视角。解散的表示使从2D到3D的运动重新定位,具有高精度。我们的方法在运动转移基准上实现了卓越的性能,具有大的身体变化和具有挑战性的动作。值得注意的是,规范化的骨架序列可以用作人类运动的解除戒备和可解释的表示,这些人的运动会受益于行动分析和运动检索。
translated by 谷歌翻译
这项工作提出了M3E2,一种多任务学习神经网络模型来估计多种治疗的效果。与现有方法相比,M3E2对于同时应用于同一单元,连续和二元处理以及许多协变量的多种治疗效果是鲁棒的。我们将M3E2与三个基准数据集中的三个基线进行比较:两个具有多种治疗和一个待遇。我们的分析表明,我们的方法具有卓越的性能,制作了对真实治疗效果的更大的自信估计。代码可在github.com/raquelaoki/m3e2上获得。
translated by 谷歌翻译
预训练为深入学习支持的X线射线分析中最近的成功奠定了基础。它通过在源域上进行大规模完全监督或自我监督的学习来学习可转移的图像表示。然而,监督的预培训需要复杂和劳动密集的两级人类辅助注释过程,而自我监督的学习不能与监督范例竞争。为了解决这些问题,我们提出了一个跨监督的方法,命名为审查监督(指的)的自由文本报告,该报告从射线照相中获取来自原始放射学报告的自由监督信号。该方法采用了视觉变压器,旨在从每个患者研究中的多种视图中学习联合表示。在极其有限的监督下,引用其在4个众所周知的X射线数据集上的转移学习和自我监督学习对应。此外,甚至是基于具有人辅助结构标签的射线照相的源区的甚至超越方法。因此,有可能取代规范的预训练方法。
translated by 谷歌翻译