使用复杂的数学方法建模的工程问题或者以昂贵的测试或实验为特征,占用有限预算或有限计算资源。此外,行业的实际情景,基于物流和偏好,对可以进行实验的方式施加限制。例如,材料供应可以仅在单次或计算模型的情况下仅实现少量实验,因此可以基于共享计算资源面临显着的等待时间。在这种情况下,一个人通常以允许最大化一个人的知识的方式进行实验,同时满足上述实际限制。实验顺序设计(Sdoe)是一种流行的方法套件,近年来越来越多的不同工程和实际问题。利用贝叶斯形式主义的普通战略是贝叶斯Sdoe,它通常在一步一步的一步中选择单一实验的一步或近视场景中最好的工作。在这项工作中,我们的目标是扩展SDOE策略,以批量输入查询实验或计算机代码。为此,我们利用基于深度加强学习(RL)的政策梯度方法,提出批次选择的查询,以考虑到整个预算。该算法保留了SDOE中固有的顺序性质,同时基于来自深rl域的任务的奖励元素。所提出的方法的独特能力是其应用于多个任务的能力,例如函数的优化,一旦其培训。我们展示了在合成问题上提出了算法的性能,以及挑战的高维工程问题。
translated by 谷歌翻译
For applications that require processing large amounts of text at inference time, Large Language Models (LLMs) are handicapped by their limited context windows, which are typically 2048 tokens. In-context learning, an emergent phenomenon in LLMs in sizes above a certain parameter threshold, constitutes one significant example because it can only leverage training examples that fit into the context window. Existing efforts to address the context window limitation involve training specialized architectures, which tend to be smaller than the sizes in which in-context learning manifests due to the memory footprint of processing long texts. We present Parallel Context Windows (PCW), a method that alleviates the context window restriction for any off-the-shelf LLM without further training. The key to the approach is to carve a long context into chunks (``windows'') that fit within the architecture, restrict the attention mechanism to apply only within each window, and re-use the positional embeddings among the windows. We test the PCW approach on in-context learning with models that range in size between 750 million and 178 billion parameters, and show substantial improvements for tasks with diverse input and output spaces. Our results motivate further investigation of Parallel Context Windows as a method for applying off-the-shelf LLMs in other settings that require long text sequences.
translated by 谷歌翻译
Models trained from real-world data tend to imitate and amplify social biases. Although there are many methods suggested to mitigate biases, they require a preliminary information on the types of biases that should be mitigated (e.g., gender or racial bias) and the social groups associated with each data sample. In this work, we propose a debiasing method that operates without any prior knowledge of the demographics in the dataset, detecting biased examples based on an auxiliary model that predicts the main model's success and down-weights them during the training process. Results on racial and gender bias demonstrate that it is possible to mitigate social biases without having to use a costly demographic annotation process.
translated by 谷歌翻译
Dual encoders are now the dominant architecture for dense retrieval. Yet, we have little understanding of how they represent text, and why this leads to good performance. In this work, we shed light on this question via distributions over the vocabulary. We propose to interpret the vector representations produced by dual encoders by projecting them into the model's vocabulary space. We show that the resulting distributions over vocabulary tokens are intuitive and contain rich semantic information. We find that this view can explain some of the failure cases of dense retrievers. For example, the inability of models to handle tail entities can be explained via a tendency of the token distributions to forget some of the tokens of those entities. We leverage this insight and propose a simple way to enrich query and passage representations with lexical information at inference time, and show that this significantly improves performance compared to the original model in out-of-domain settings.
translated by 谷歌翻译
A household robot should be able to navigate to target locations without requiring users to first annotate everything in their home. Current approaches to this object navigation challenge do not test on real robots and rely on expensive semantically labeled 3D meshes. In this work, our aim is an agent that builds self-supervised models of the world via exploration, the same as a child might. We propose an end-to-end self-supervised embodied agent that leverages exploration to train a semantic segmentation model of 3D objects, and uses those representations to learn an object navigation policy purely from self-labeled 3D meshes. The key insight is that embodied agents can leverage location consistency as a supervision signal - collecting images from different views/angles and applying contrastive learning to fine-tune a semantic segmentation model. In our experiments, we observe that our framework performs better than other self-supervised baselines and competitively with supervised baselines, in both simulation and when deployed in real houses.
translated by 谷歌翻译
A core process in human cognition is analogical mapping: the ability to identify a similar relational structure between different situations. We introduce a novel task, Visual Analogies of Situation Recognition, adapting the classical word-analogy task into the visual domain. Given a triplet of images, the task is to select an image candidate B' that completes the analogy (A to A' is like B to what?). Unlike previous work on visual analogy that focused on simple image transformations, we tackle complex analogies requiring understanding of scenes. We leverage situation recognition annotations and the CLIP model to generate a large set of 500k candidate analogies. Crowdsourced annotations for a sample of the data indicate that humans agree with the dataset label ~80% of the time (chance level 25%). Furthermore, we use human annotations to create a gold-standard dataset of 3,820 validated analogies. Our experiments demonstrate that state-of-the-art models do well when distractors are chosen randomly (~86%), but struggle with carefully chosen distractors (~53%, compared to 90% human accuracy). We hope our dataset will encourage the development of new analogy-making models. Website: https://vasr-dataset.github.io/
translated by 谷歌翻译
This paper investigates models of event implications. Specifically, how well models predict entity state-changes, by targeting their understanding of physical attributes. Nominally, Large Language models (LLM) have been exposed to procedural knowledge about how objects interact, yet our benchmarking shows they fail to reason about the world. Conversely, we also demonstrate that existing approaches often misrepresent the surprising abilities of LLMs via improper task encodings and that proper model prompting can dramatically improve performance of reported baseline results across multiple tasks. In particular, our results indicate that our prompting technique is especially useful for unseen attributes (out-of-domain) or when only limited data is available.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
In dense neighborhoods, there are often dozens of homes in close proximity. This can either be a tight city-block with many single-family homes (SFHs), or a multiple dwelling units (MDU) complex (such as a big apartment building or condominium). Each home in such a neighborhood (either a SFH or a single unit in a MDU complex) has its own Wi-Fi access point (AP). Because there are few (typically 2 or 3) non-overlapping radio channels for Wi-Fi, neighboring homes may find themselves sharing a channel and competing over airtime, which may cause bad experience of slow internet (long latency, buffering while streaming movies, etc.). Wi-Fi optimization over all the APs in a dense neighborhood is highly desired to provide the best user experience. We present a method for Wi-Fi channel selection in a centralized way for all the APs in a dense neighborhood. We describe how to use recent observations to estimate the potential-pain matrix - for each pair of APs, how much Wi-Fi-pain would they cause each other if they were on the same channel. We formulate an optimization problem - finding a channel allocation (which channel each home should use) that minimizes the total Wi-Fi-pain in the neighborhood. We design an optimization algorithm that uses gradient descent over a neural network to solve the optimization problem. We describe initial results from offline experiments comparing our optimization solver to an off-the-shelf mixed-integer-programming solver. In our experiments we show that the off-the-shelf solver manages to find a better (lower total pain) solution on the train data (from the recent days), but our neural-network solver generalizes better - it finds a solution that achieves lower total pain for the test data (tomorrow).
translated by 谷歌翻译
The field of emergent communication aims to understand the characteristics of communication as it emerges from artificial agents solving tasks that require information exchange. Communication with discrete messages is considered a desired characteristic, for both scientific and applied reasons. However, training a multi-agent system with discrete communication is not straightforward, requiring either reinforcement learning algorithms or relaxing the discreteness requirement via a continuous approximation such as the Gumbel-softmax. Both these solutions result in poor performance compared to fully continuous communication. In this work, we propose an alternative approach to achieve discrete communication -- quantization of communicated messages. Using message quantization allows us to train the model end-to-end, achieving superior performance in multiple setups. Moreover, quantization is a natural framework that runs the gamut from continuous to discrete communication. Thus, it sets the ground for a broader view of multi-agent communication in the deep learning era.
translated by 谷歌翻译