Large deep learning models have achieved remarkable success in many scenarios. However, training large models is usually challenging, e.g., due to the high computational cost, the unstable and painfully slow optimization procedure, and the vulnerability to overfitting. To alleviate these problems, this work studies a divide-and-conquer strategy, i.e., dividing a large model into smaller modules, training them independently, and reassembling the trained modules to obtain the target model. This approach is promising since it avoids directly training large models from scratch. Nevertheless, implementing this idea is non-trivial, as it is difficult to ensure the compatibility of the independently trained modules. In this paper, we present an elegant solution to address this issue, i.e., we introduce a global, shared meta model to implicitly link all the modules together. This enables us to train highly compatible modules that collaborate effectively when they are assembled together. We further propose a module incubation mechanism that enables the meta model to be designed as an extremely shallow network. As a result, the additional overhead introduced by the meta model is minimalized. Though conceptually simple, our method significantly outperforms end-to-end (E2E) training in terms of both final accuracy and training efficiency. For example, on top of ViT-Huge, it improves the accuracy by 2.7% compared to the E2E baseline on ImageNet-1K, while saving the training cost by 43% in the meantime. Code is available at https://github.com/LeapLabTHU/Model-Assembling.
translated by 谷歌翻译
Metric-based meta-learning is one of the de facto standards in few-shot learning. It composes of representation learning and metrics calculation designs. Previous works construct class representations in different ways, varying from mean output embedding to covariance and distributions. However, using embeddings in space lacks expressivity and cannot capture class information robustly, while statistical complex modeling poses difficulty to metric designs. In this work, we use tensor fields (``areas'') to model classes from the geometrical perspective for few-shot learning. We present a simple and effective method, dubbed hypersphere prototypes (HyperProto), where class information is represented by hyperspheres with dynamic sizes with two sets of learnable parameters: the hypersphere's center and the radius. Extending from points to areas, hyperspheres are much more expressive than embeddings. Moreover, it is more convenient to perform metric-based classification with hypersphere prototypes than statistical modeling, as we only need to calculate the distance from a data point to the surface of the hypersphere. Following this idea, we also develop two variants of prototypes under other measurements. Extensive experiments and analysis on few-shot learning tasks across NLP and CV and comparison with 20+ competitive baselines demonstrate the effectiveness of our approach.
translated by 谷歌翻译
最近的研究表明,减少时间和空间冗余都是有效的视频识别方法的有效方法,例如,将大多数计算分配给与任务相关的框架或每个帧中最有价值的图像区域。但是,在大多数现有的作品中,任何一种类型的冗余通常都是用另一个缺失建模的。本文探讨了在最近提出的ADAFOCUSV2算法之上的时空动态计算的统一配方,从而有助于改进的ADAFOCUSV3框架。我们的方法仅在一些小但有益的3D视频立方体上激活昂贵的高容量网络来降低计算成本。这些立方体是从框架高度,宽度和视频持续时间形成的空间中裁剪的,而它们的位置则以每样本样本为基础的轻加权政策网络自适应地确定。在测试时间,与每个视频相对应的立方体的数量是动态配置的,即,对视频立方体进行顺序处理,直到产生足够可靠的预测为止。值得注意的是,可以通过近似可插入深度特征的插值来有效地训练adafocusv3。六个基准数据集(即ActivityNet,FCVID,Mini-Kinetics,Something Something V1&V2和潜水48)上的广泛经验结果表明,我们的模型比竞争性基线要高得多。
translated by 谷歌翻译
基于骨架的人类行动识别是由于其复杂的动态而是一项长期挑战。动态的一些细颗粒细节在分类中起着至关重要的作用。现有的工作主要集中在设计带有更复杂的相邻矩阵的增量神经网络上,以捕获关节关系的细节。但是,他们仍然很难区分具有广泛相似运动模式但属于不同类别的动作。有趣的是,我们发现运动模式上的细微差异可以显着放大,并且可以轻松地通过指定的视图方向来区分观众,在这些方向上,该属性以前从未得到充分探索。与以前的工作截然不同,我们通过提出一种概念上简单而有效的多视图策略来提高性能,该策略从一系列动态视图功能中识别动作。具体而言,我们设计了一个新颖的骨骼锚定建议(SAP)模块,该模块包含一个多头结构来学习一组视图。为了学习不同观点的特征学习,我们引入了一个新的角度表示,以在不同视图下的动作转换并将转换归因于基线模型。我们的模块可以与现有的动作分类模型无缝合作。与基线模型合并,我们的SAP模块在许多具有挑战性的基准上展示了明显的性能增长。此外,全面的实验表明,我们的模型始终击败了最新的实验,并且在处理损坏的数据时保持有效和健壮。相关代码将在https://github.com/ideal-idea/sap上提供。
translated by 谷歌翻译
关于无监督的域适应性(UDA)的广泛研究已将有限的实验数据集深入学习到现实世界中无约束的领域。大多数UDA接近通用嵌入空间中的对齐功能,并将共享分类器应用于目标预测。但是,由于当域差异很大时可能不存在完全排列的特征空间,因此这些方法受到了两个局限性。首先,由于缺乏目标标签监督,强制域的比对会恶化目标域的可区分性。其次,源监督分类器不可避免地偏向源数据,因此它在目标域中的表现可能不佳。为了减轻这些问题,我们建议在两个集中在不同领域的空间中同时进行特征对齐,并为每个空间创建一个针对该域的面向域的分类器。具体而言,我们设计了一个面向域的变压器(DOT),该变压器(DOT)具有两个单独的分类令牌,以学习不同的面向域的表示形式和两个分类器,以保持域的可区分性。理论保证的基于对比度的对齐和源指导的伪标签细化策略被用来探索域名和特定信息。全面的实验验证了我们的方法在几个基准上实现了最先进的方法。
translated by 谷歌翻译
我们考虑了自主渠道访问(AutoCA)的问题,其中一组终端试图以分布式方式通过常见的无线通道发现具有访问点(AP)的通信策略。由于拓扑不规则和终端的通信范围有限,因此对AutoCA的实用挑战是隐藏的终端问题,在无线网络中臭名昭著,可以使吞吐量和延迟性能恶化。为了应对挑战,本文提出了一种新的多代理深钢筋学习范式,该学习范式被称为Madrl-HT,在存在隐藏码头的情况下为Autoca量身定制。 MADRL-HT利用拓扑见解,并将每个终端的观察空间转变为独立于终端数量的可扩展形式。为了补偿部分可观察性,我们提出了一种外观机制,以便终端可以从载体感知的通道状态以及AP的反馈中推断出其隐藏终端的行为。提出了基于窗口的全球奖励功能,从而指示终端在学习过程中平衡终端的传输机会,以最大程度地提高系统吞吐量。广泛的数值实验验证了我们的解决方案基准测试的优越性能,并通过避免碰撞(CSMA/CA)方案对旧的载体 - 义值访问。
translated by 谷歌翻译
空间冗余广泛存在于视觉识别任务中,即图像或视频帧中的判别特征通常对应于像素的子集,而剩余区域与手头的任务无关。因此,在时间和空间消耗方面,处理具有相等计算量的所有像素的静态模型导致相当冗余。在本文中,我们将图像识别问题标准为顺序粗致细特征学习过程,模仿人类视觉系统。具体地,所提出的浏览和焦点网络(GFNET)首先以低分辨率比例提取输入图像的快速全局表示,然后策略性地参加一系列突出(小)区域以学习更精细的功能。顺序过程自然地促进了在测试时间的自适应推断,因为一旦模型对其预测充分信心,可以终止它,避免了进一步的冗余计算。值得注意的是,在我们模型中定位判别区域的问题被制定为增强学习任务,因此不需要除分类标签之外的其他手动注释。 GFNET是一般的,灵活,因为它与任何现成的骨干网型号(例如MobileCenets,Abservennet和TSM)兼容,可以方便地部署为特征提取器。对各种图像分类和视频识别任务的广泛实验以及各种骨干模型,证明了我们方法的显着效率。例如,它通过1.3倍降低了高效MobileNet-V3的平均等待时间,而不会牺牲精度。代码和预先训练的模型可在https://github.com/blackfeather-wang/gfnet-pytorch获得。
translated by 谷歌翻译
最近的作品表明,通过降低空间冗余,可以显着提高视频识别的计算效率。作为代表性的工作,自适应焦点方法(Adafocus)通过动态识别和参加每个视频帧中的信息区域来实现精度和推理速度之间的有利权衡。然而,除非领需要一个复杂的三阶段训练管道(涉及强化学习),导致收敛缓慢,对从业者不友好。这项工作通过引入基于分配的内插的补丁选择操作来重新重新培训ADAFOCUS作为简单的单级算法,实现有效的端到端优化。我们进一步提出了一种改进的培训计划,以解决一级制定的问题,包括缺乏监督,投入多样性和培训稳定性。此外,提出了一种条件 - 退出技术,用于在没有额外训练的情况下在Adafocus的顶部执行时间自适应计算。在六个基准数据集(即,ActivityNet,FCVID,Mini-Kinetics,Something-V1&V2和Jesters)上进行了广泛的实验表明,我们的模型显着优于原始的Adafocus和其他竞争基础,同时培训更简单和有效。代码可在https://github.com/leaplabthu/adafocusv2获得。
translated by 谷歌翻译
无监督的域适应(UDA)旨在将知识从标记的源域传输到未标记的目标域。大多数现有的UDA方法通过学习域 - 不变的表示和在两个域中共享一个分类器来实现知识传输。但是,忽略与任务相关的域特定信息,并强制统一的分类器以适合两个域将限制每个域中的特征表达性。在本文中,通过观察到具有可比参数的变压器架构可以产生比CNN对应的更可转换的表示,我们提出了一个双赢的变压器框架(WINTR),它分别探讨了每个域的特定于域的知识,而同时交互式跨域知识。具体而言,我们使用变压器中的两个单独的分类令牌学习两个不同的映射,以及每个特定于域的分类器的设计。跨域知识通过源引导标签改进和与源或目标的单侧特征对齐传输,这保持了特定于域的信息的完整性。三个基准数据集的广泛实验表明,我们的方法优于最先进的UDA方法,验证利用域特定和不变性的有效性
translated by 谷歌翻译
动态神经网络是深度学习中的新兴的研究课题。与具有推断阶段的固定计算图和参数的静态模型相比,动态网络可以使其结构或参数适应不同的输入,从而在本调查中的准确性,计算效率,适应性等方面的显着优势。我们全面地通过将动态网络分为三个主要类别:1)使用数据相关的架构或参数进行处理的实例 - Wise-Wise DiveS动态模型的速度开发区域2)关于图像数据的不同空间位置和3)沿着诸如视频和文本的顺序数据的时间维度执行自适应推断的时间明智的动态模型进行自适应计算的空间 - 方向动态网络。系统地审查了动态网络的重要研究问题,例如架构设计,决策方案,优化技术和应用。最后,我们与有趣的未来研究方向讨论了该领域的开放问题。
translated by 谷歌翻译