由于钻孔对准的困难以及任务的固有不稳定性,在手动完成时,在弯曲的表面上钻一个孔很容易失败,可能会对工人造成伤害和疲劳。另一方面,在实际制造环境中充分自动化此类任务可能是不切实际的,因为到达装配线的零件可以具有各种复杂形状,在这些零件上不容易访问钻头位置,从而使自动化路径计划变得困难。在这项工作中,开发并部署了一个具有6个自由度的自适应入学控制器,并部署在Kuka LBR IIWA 7配件上,使操作员能够用一只手舒适地在机器人上安装在机器人上的钻头,并在弯曲的表面上开放孔,并在弯曲的表面上开放孔。通过AR界面提供的玉米饼和视觉指导的触觉指导。接收阻尼的实时适应性在自由空间中驱动机器人时,可以在确保钻孔过程中稳定时提供更高的透明度。用户将钻头足够靠近钻头目标并大致与所需的钻探角度对齐后,触觉指导模块首先对对齐进行微调,然后将用户运动仅限于钻孔轴,然后操作员仅将钻头推动钻头以最小的努力进入工件。进行了两组实验,以定量地研究触觉指导模块的潜在好处(实验I),以及根据参与者的主观意见(实验II),提出的用于实际制造环境的PHRI系统的实际价值。
translated by 谷歌翻译
We present a novel image inversion framework and a training pipeline to achieve high-fidelity image inversion with high-quality attribute editing. Inverting real images into StyleGAN's latent space is an extensively studied problem, yet the trade-off between the image reconstruction fidelity and image editing quality remains an open challenge. The low-rate latent spaces are limited in their expressiveness power for high-fidelity reconstruction. On the other hand, high-rate latent spaces result in degradation in editing quality. In this work, to achieve high-fidelity inversion, we learn residual features in higher latent codes that lower latent codes were not able to encode. This enables preserving image details in reconstruction. To achieve high-quality editing, we learn how to transform the residual features for adapting to manipulations in latent codes. We train the framework to extract residual features and transform them via a novel architecture pipeline and cycle consistency losses. We run extensive experiments and compare our method with state-of-the-art inversion methods. Qualitative metrics and visual comparisons show significant improvements. Code: https://github.com/hamzapehlivan/StyleRes
translated by 谷歌翻译
Artificial Intelligence (AI) and its applications have sparked extraordinary interest in recent years. This achievement can be ascribed in part to advances in AI subfields including Machine Learning (ML), Computer Vision (CV), and Natural Language Processing (NLP). Deep learning, a sub-field of machine learning that employs artificial neural network concepts, has enabled the most rapid growth in these domains. The integration of vision and language has sparked a lot of attention as a result of this. The tasks have been created in such a way that they properly exemplify the concepts of deep learning. In this review paper, we provide a thorough and an extensive review of the state of the arts approaches, key models design principles and discuss existing datasets, methods, their problem formulation and evaluation measures for VQA and Visual reasoning tasks to understand vision and language representation learning. We also present some potential future paths in this field of research, with the hope that our study may generate new ideas and novel approaches to handle existing difficulties and develop new applications.
translated by 谷歌翻译
We investigate ensemble methods for prediction in an online setting. Unlike all the literature in ensembling, for the first time, we introduce a new approach using a meta learner that effectively combines the base model predictions via using a superset of the features that is the union of the base models' feature vectors instead of the predictions themselves. Here, our model does not use the predictions of the base models as inputs to a machine learning algorithm, but choose the best possible combination at each time step based on the state of the problem. We explore three different constraint spaces for the ensembling of the base learners that linearly combines the base predictions, which are convex combinations where the components of the ensembling vector are all nonnegative and sum up to 1; affine combinations where the weight vector components are required to sum up to 1; and the unconstrained combinations where the components are free to take any real value. The constraints are both theoretically analyzed under known statistics and integrated into the learning procedure of the meta learner as a part of the optimization in an automated manner. To show the practical efficiency of the proposed method, we employ a gradient-boosted decision tree and a multi-layer perceptron separately as the meta learners. Our framework is generic so that one can use other machine learning architectures as the ensembler as long as they allow for a custom differentiable loss for minimization. We demonstrate the learning behavior of our algorithm on synthetic data and the significant performance improvements over the conventional methods over various real life datasets, extensively used in the well-known data competitions. Furthermore, we openly share the source code of the proposed method to facilitate further research and comparison.
translated by 谷歌翻译
Generic motion understanding from video involves not only tracking objects, but also perceiving how their surfaces deform and move. This information is useful to make inferences about 3D shape, physical properties and object interactions. While the problem of tracking arbitrary physical points on surfaces over longer video clips has received some attention, no dataset or benchmark for evaluation existed, until now. In this paper, we first formalize the problem, naming it tracking any point (TAP). We introduce a companion benchmark, TAP-Vid, which is composed of both real-world videos with accurate human annotations of point tracks, and synthetic videos with perfect ground-truth point tracks. Central to the construction of our benchmark is a novel semi-automatic crowdsourced pipeline which uses optical flow estimates to compensate for easier, short-term motion like camera shake, allowing annotators to focus on harder sections of video. We validate our pipeline on synthetic data and propose a simple end-to-end point tracking model TAP-Net, showing that it outperforms all prior methods on our benchmark when trained on synthetic data.
translated by 谷歌翻译
深度度量学习(DML)旨在最大程度地减少嵌入图像中成对内部/间阶层接近性违规的经验预期损失。我们将DML与有限机会限制的可行性问题联系起来。我们表明,基于代理的DML的最小化器满足了某些机会限制,并且基于代理方法的最坏情况可以通过围绕类代理的最小球的半径来表征,以覆盖相应类的整个域样本,建议每课多个代理有助于表现。为了提供可扩展的算法并利用更多代理,我们考虑了基于代理的DML实例的最小化者所隐含的机会限制,并将DML重新制定为在此类约束的交叉点中找到可行的点,从而导致问题近似解决。迭代预测。简而言之,我们反复训练基于代理的损失,并用故意选择的新样本的嵌入来重新定位代理。我们将我们的方法应用于公认的损失,并在四个流行的基准数据集上评估图像检索。优于最先进的方法,我们的方法一致地提高了应用损失的性能。代码可在以下网址找到:https://github.com/yetigurbuz/ccp-dml
translated by 谷歌翻译
探索搜索空间是几十年来吸引研究人员兴趣的最不可预测的挑战之一。处理不可预测性的一种方法是表征搜索空间并采取相应的行动。特征良好的搜索空间可以帮助将问题状态映射到一组运算符,以生成新的问题状态。在本文中,已经使用最知名的机器学习方法分析了基于景观分析的功能集,以确定最佳功能集。但是,为了处理问题的复杂性并引起共同点以跨领域转移经验,最具代表性特征的选择仍然至关重要。提出的方法分析了一组特征的预测性,以确定最佳分类。
translated by 谷歌翻译
通过脑电图信号的情绪分类取得了许多进步。但是,诸如缺乏数据和学习重要特征和模式之类的问题始终是具有在计算和预测准确性方面改进的领域。这项工作分析了基线机器学习分类器在DEAP数据集上的性能以及一种表格学习方法,该方法提供了最新的可比结果,从而利用了性能提升,这是由于其深度学习架构而无需部署重型神经网络。
translated by 谷歌翻译
从学术文章中自动提取资金信息为行业和研究社区增添了重要价值,例如基于收到的资金进行资助组织,研究人员和大学的研究成果,并支持开放访问政策。识别和链接资金实体的两个主要挑战是:(i)知识库(KB)的稀疏图结构,这使得基于图的常用实体链接方法的资金域链接方法,(ii)KB中的缺失实体,这(与最近的零拍方法不同)需要标记实体提及没有KB条目为零。我们提出了一个可以执行零预测并克服数据稀缺问题的实体链接模型。我们的模型建立在基于变压器的提及检测和双重编码模型的基础上,以执行实体链接。我们表明,我们的模型表现优于现有基线。
translated by 谷歌翻译
发现广泛使用的深度学习模型的稳健性差。几乎没有噪音可以欺骗最先进的模型来做出错误的预测。尽管有很多高性能攻击生成方法,但其中大多数直接在原始数据中添加了扰动,并使用L_P规范对其进行测量;这可能会破坏数据的主要结构,从而产生无效的攻击。在本文中,我们提出了一个黑框攻击,该攻击不是修改原始数据,而是修改由自动编码器提取的数据的潜在特征;然后,我们测量语义空间中的噪音以保护数据的语义。我们在MNIST和CIFAR-10数据集上训练了自动编码器,并使用遗传算法发现了最佳的对抗扰动。我们的方法在MNIST和CIFAR-10数据集的前100个数据上获得了100%的攻击成功率,而扰动率较小。
translated by 谷歌翻译