在本研究中,我们提出了一种基于病例的新型图像检索(SIR)方法,用于苏木精和曙红(H&E)染色的恶性淋巴瘤的组织病理学图像。当将整个幻灯片图像(WSI)用作输入查询时,希望能够通过重点关注病理上重要区域(例如肿瘤细胞)中的图像斑块来检索相似情况。为了解决这个问题,我们采用了基于注意力的多个实例学习,这使我们能够在计算案例之间的相似性时专注于肿瘤特异性区域。此外,我们采用对比度距离度量学习将免疫组织化学(IHC)染色模式纳入有用的监督信息,以定义异质性恶性淋巴瘤病例之间的适当相似性。在对249例恶性淋巴瘤患者的实验中,我们证实该方法比基线基于病例的SIR方法表现出更高的评估措施。此外,病理学家的主观评估表明,我们使用IHC染色模式的相似性度量适用于代表恶性淋巴瘤H&E染色组织图像的相似性。
translated by 谷歌翻译
Agents that can follow language instructions are expected to be useful in a variety of situations such as navigation. However, training neural network-based agents requires numerous paired trajectories and languages. This paper proposes using multimodal generative models for semi-supervised learning in the instruction following tasks. The models learn a shared representation of the paired data, and enable semi-supervised learning by reconstructing unpaired data through the representation. Key challenges in applying the models to sequence-to-sequence tasks including instruction following are learning a shared representation of variable-length mulitimodal data and incorporating attention mechanisms. To address the problems, this paper proposes a novel network architecture to absorb the difference in the sequence lengths of the multimodal data. In addition, to further improve the performance, this paper shows how to incorporate the generative model-based approach with an existing semi-supervised method called a speaker-follower model, and proposes a regularization term that improves inference using unpaired trajectories. Experiments on BabyAI and Room-to-Room (R2R) environments show that the proposed method improves the performance of instruction following by leveraging unpaired data, and improves the performance of the speaker-follower model by 2\% to 4\% in R2R.
translated by 谷歌翻译
A polarization camera has great potential for 3D reconstruction since the angle of polarization (AoP) and the degree of polarization (DoP) of reflected light are related to an object's surface normal. In this paper, we propose a novel 3D reconstruction method called Polarimetric Multi-View Inverse Rendering (Polarimetric MVIR) that effectively exploits geometric, photometric, and polarimetric cues extracted from input multi-view color-polarization images. We first estimate camera poses and an initial 3D model by geometric reconstruction with a standard structure-from-motion and multi-view stereo pipeline. We then refine the initial model by optimizing photometric rendering errors and polarimetric errors using multi-view RGB, AoP, and DoP images, where we propose a novel polarimetric cost function that enables an effective constraint on the estimated surface normal of each vertex, while considering four possible ambiguous azimuth angles revealed from the AoP measurement. The weight for the polarimetric cost is effectively determined based on the DoP measurement, which is regarded as the reliability of polarimetric information. Experimental results using both synthetic and real data demonstrate that our Polarimetric MVIR can reconstruct a detailed 3D shape without assuming a specific surface material and lighting condition.
translated by 谷歌翻译
Drug repositioning holds great promise because it can reduce the time and cost of new drug development. While drug repositioning can omit various R&D processes, confirming pharmacological effects on biomolecules is essential for application to new diseases. Biomedical explainability in a drug repositioning model can support appropriate insights in subsequent in-depth studies. However, the validity of the XAI methodology is still under debate, and the effectiveness of XAI in drug repositioning prediction applications remains unclear. In this study, we propose GraphIX, an explainable drug repositioning framework using biological networks, and quantitatively evaluate its explainability. GraphIX first learns the network weights and node features using a graph neural network from known drug indication and knowledge graph that consists of three types of nodes (but not given node type information): disease, drug, and protein. Analysis of the post-learning features showed that node types that were not known to the model beforehand are distinguished through the learning process based on the graph structure. From the learned weights and features, GraphIX then predicts the disease-drug association and calculates the contribution values of the nodes located in the neighborhood of the predicted disease and drug. We hypothesized that the neighboring protein node to which the model gave a high contribution is important in understanding the actual pharmacological effects. Quantitative evaluation of the validity of protein nodes' contribution using a real-world database showed that the high contribution proteins shown by GraphIX are reasonable as a mechanism of drug action. GraphIX is a framework for evidence-based drug discovery that can present to users new disease-drug associations and identify the protein important for understanding its pharmacological effects from a large and complex knowledge base.
translated by 谷歌翻译
Text-to-speech synthesis (TTS) is a task to convert texts into speech. Two of the factors that have been driving TTS are the advancements of probabilistic models and latent representation learning. We propose a TTS method based on latent variable conversion using a diffusion probabilistic model and the variational autoencoder (VAE). In our TTS method, we use a waveform model based on VAE, a diffusion model that predicts the distribution of latent variables in the waveform model from texts, and an alignment model that learns alignments between the text and speech latent sequences. Our method integrates diffusion with VAE by modeling both mean and variance parameters with diffusion, where the target distribution is determined by approximation from VAE. This latent variable conversion framework potentially enables us to flexibly incorporate various latent feature extractors. Our experiments show that our method is robust to linguistic labels with poor orthography and alignment errors.
translated by 谷歌翻译
End-to-end text-to-speech synthesis (TTS) can generate highly natural synthetic speech from raw text. However, rendering the correct pitch accents is still a challenging problem for end-to-end TTS. To tackle the challenge of rendering correct pitch accent in Japanese end-to-end TTS, we adopt PnG~BERT, a self-supervised pretrained model in the character and phoneme domain for TTS. We investigate the effects of features captured by PnG~BERT on Japanese TTS by modifying the fine-tuning condition to determine the conditions helpful inferring pitch accents. We manipulate content of PnG~BERT features from being text-oriented to speech-oriented by changing the number of fine-tuned layers during TTS. In addition, we teach PnG~BERT pitch accent information by fine-tuning with tone prediction as an additional downstream task. Our experimental results show that the features of PnG~BERT captured by pretraining contain information helpful inferring pitch accent, and PnG~BERT outperforms baseline Tacotron on accent correctness in a listening test.
translated by 谷歌翻译
Edema is a common symptom of kidney disease, and quantitative measurement of edema is desired. This paper presents a method to estimate the degree of edema from facial images taken before and after dialysis of renal failure patients. As tasks to estimate the degree of edema, we perform pre- and post-dialysis classification and body weight prediction. We develop a multi-patient pre-training framework for acquiring knowledge of edema and transfer the pre-trained model to a model for each patient. For effective pre-training, we propose a novel contrastive representation learning, called weight-aware supervised momentum contrast (WeightSupMoCo). WeightSupMoCo aims to make feature representations of facial images closer in similarity of patient weight when the pre- and post-dialysis labels are the same. Experimental results show that our pre-training approach improves the accuracy of pre- and post-dialysis classification by 15.1% and reduces the mean absolute error of weight prediction by 0.243 kg compared with training from scratch. The proposed method accurately estimate the degree of edema from facial images; our edema estimation system could thus be beneficial to dialysis patients.
translated by 谷歌翻译
Peripheral blood oxygen saturation (SpO2), an indicator of oxygen levels in the blood, is one of the most important physiological parameters. Although SpO2 is usually measured using a pulse oximeter, non-contact SpO2 estimation methods from facial or hand videos have been attracting attention in recent years. In this paper, we propose an SpO2 estimation method from facial videos based on convolutional neural networks (CNN). Our method constructs CNN models that consider the direct current (DC) and alternating current (AC) components extracted from the RGB signals of facial videos, which are important in the principle of SpO2 estimation. Specifically, we extract the DC and AC components from the spatio-temporal map using filtering processes and train CNN models to predict SpO2 from these components. We also propose an end-to-end model that predicts SpO2 directly from the spatio-temporal map by extracting the DC and AC components via convolutional layers. Experiments using facial videos and SpO2 data from 50 subjects demonstrate that the proposed method achieves a better estimation performance than current state-of-the-art SpO2 estimation methods.
translated by 谷歌翻译
Off-policy evaluation (OPE) attempts to predict the performance of counterfactual policies using log data from a different policy. We extend its applicability by developing an OPE method for a class of both full support and deficient support logging policies in contextual-bandit settings. This class includes deterministic bandit (such as Upper Confidence Bound) as well as deterministic decision-making based on supervised and unsupervised learning. We prove that our method's prediction converges in probability to the true performance of a counterfactual policy as the sample size increases. We validate our method with experiments on partly and entirely deterministic logging policies. Finally, we apply it to evaluate coupon targeting policies by a major online platform and show how to improve the existing policy.
translated by 谷歌翻译
We propose a novel backpropagation algorithm for training spiking neural networks (SNNs) that encodes information in the relative multiple spike timing of individual neurons without single-spike restrictions. The proposed algorithm inherits the advantages of conventional timing-based methods in that it computes accurate gradients with respect to spike timing, which promotes ideal temporal coding. Unlike conventional methods where each neuron fires at most once, the proposed algorithm allows each neuron to fire multiple times. This extension naturally improves the computational capacity of SNNs. Our SNN model outperformed comparable SNN models and achieved as high accuracy as non-convolutional artificial neural networks. The spike count property of our networks was altered depending on the time constant of the postsynaptic current and the membrane potential. Moreover, we found that there existed the optimal time constant with the maximum test accuracy. That was not seen in conventional SNNs with single-spike restrictions on time-to-fast-spike (TTFS) coding. This result demonstrates the computational properties of SNNs that biologically encode information into the multi-spike timing of individual neurons. Our code would be publicly available.
translated by 谷歌翻译