Frozen pretrained models have become a viable alternative to the pretraining-then-finetuning paradigm for transfer learning. However, with frozen models there are relatively few parameters available for adapting to downstream tasks, which is problematic in computer vision where tasks vary significantly in input/output format and the type of information that is of value. In this paper, we present a study of frozen pretrained models when applied to diverse and representative computer vision tasks, including object detection, semantic segmentation and video action recognition. From this empirical analysis, our work answers the questions of what pretraining task fits best with this frozen setting, how to make the frozen setting more flexible to various downstream tasks, and the effect of larger model sizes. We additionally examine the upper bound of performance using a giant frozen pretrained model with 3 billion parameters (SwinV2-G) and find that it reaches competitive performance on a varied set of major benchmarks with only one shared frozen base network: 60.0 box mAP and 52.2 mask mAP on COCO object detection test-dev, 57.6 val mIoU on ADE20K semantic segmentation, and 81.7 top-1 accuracy on Kinetics-400 action recognition. With this work, we hope to bring greater attention to this promising path of freezing pretrained image models.
translated by 谷歌翻译
自我监督学习的一个重要目标是使模型预训练能够从几乎无限的数据中受益。但是,一种最近变得流行的方法,即掩盖图像建模(MIM),被怀疑无法从较大的数据中受益。在这项工作中,我们通过广泛的实验打破了这一误解,数据量表从10 \%imagenet-1k到完整的Imagenet-22K,型号的尺寸从4,900万到10亿,培训长度从125k迭代到500k迭代迭代范围不等。我们的研究表明:(i)蒙版的图像建模也要求对较大的数据进行要求。我们观察到,非常大的模型被相对较小的数据过度。 (ii)培训的时间长度。接受掩盖图像建模训练的大型模型可以从更多的数据中受益,并具有更长的培训。 (iii)预训练中的验证损失是衡量模型在多个任务上进行微调的表现的好指标。该观察结果使我们能够预先评估预训练的模型,而无需对下游任务进行昂贵的试用和错误评估。我们希望我们的发现能够从缩放能力方面提高对蒙版图像建模的理解。
translated by 谷歌翻译
社会科学的学术文献是记录人类文明并研究人类社会问题的文献。随着这种文献的大规模增长,快速找到有关相关问题的现有研究的方法已成为对研究人员的紧迫需求。先前的研究,例如SCIBERT,已经表明,使用特定领域的文本进行预训练可以改善这些领域中自然语言处理任务的性能。但是,没有针对社会科学的预训练的语言模型,因此本文提出了关于社会科学引文指数(SSCI)期刊上许多摘要的预培训模型。这些模型可在GitHub(https://github.com/s-t-full-text-knowledge-mining/ssci-bert)上获得,在学科分类和带有社会科学文学的抽象结构 - 功能识别任务方面表现出色。
translated by 谷歌翻译
最近,Vision-Language预训练的零拍图像分类已经表现出令人难以置信的成就,即该模型可以对任意类别进行分类而不看到该类别的其他注释图像。然而,目前尚不清楚如何在更广泛的视觉问题上进行零射识别,例如对象检测和语义分割。在本文中,我们通过在现成的预训练的视觉模型,即剪辑上建立零拍语义分割来定位零拍语义分割。很难因为语义分割和剪辑模型在不同的视觉粒度上执行,该语义分段处理在像素上时,而剪辑在图像上执行。为了解决处理粒度的差异,我们拒绝使用普遍的一级FCN基于FCN的框架,并倡导一个两级语义分割框架,其中第一阶段提取一个完全提取的掩模提案和第二阶段利用基于图像的剪辑模型在第一阶段生成的蒙版图像作物上执行零拍分类。我们的实验结果表明,这种简单的框架通过大型利润率超越了先前的最先进:+29.5 Hiou On Pascal VOC 2012 DataSet,+8.9 Hiou On Coco Stuff DataSet。凭借其简单性和强大的表现,我们希望本框架成为促进未来研究的基准。
translated by 谷歌翻译
本文介绍了Simmim,这是一个简单的蒙面图像建模框架。我们在没有特殊设计的情况下简化了最近提出的相关方法,例如通过离散VAE或聚类的块状掩蔽和令牌化。要研究蒙版图像建模任务学习良好的表示,我们系统地研究了我们框架中的主要组成部分,并发现每个组件的简单设计揭示了非常强烈的表示学习性能:1)用中等的输入图像随机掩蔽输入图像大型蒙面贴片尺寸(例如,32)进行了强大的文本前任务; 2)通过直接回归预测RGB值的原始像素不比具有复杂设计的补丁分类方法更差; 3)预测头可以像线性层一样光,性能比较重的形式更差。使用VIT-B,我们的方法通过预训练在此数据集上进行预培训,我们的方法在ImageNet-1K上实现了83.8%的精细调整精度,超过了以前最佳方法+ 0.6%。当应用于大约6.5亿参数的更大模型时,SwinV2-H,它在Imagenet-1K上使用Imagenet-1K数据实现了87.1%的前1个精度。我们还利用这种方法来促进3B模型(SWINV2-G)的培训,比以前的实践中的数据减少40美元,我们在四个代表性视觉基准上实现了最先进的。代码和模型将在https://github.com/microsoft/simmim公开使用。
translated by 谷歌翻译
我们提出了用于将Swin变压器缩放到3亿参数的技术,并使其能够使用高达1,536美元的图像培训1,536美元。通过缩放容量和分辨率,Swin变压器在四个代表视觉基准上设置新记录:84.0%的Top-1在Imagenet-V2图像分类准确度,63.1 / 54.4盒/掩模地图上的Coco对象检测,59.9 Miou在Ade20K语义细分中,在动力学-400视频动作分类上的86.8%的前1个精度。我们的技术通常适用于缩放视觉模型,这尚未广泛探索为NLP语言模型,部分原因是培训和应用中的困难:1)视觉模型经常面临规模的不稳定问题,2)许多下游愿景任务需要高分辨率图像或窗口,并且目前尚不清楚如何有效地将模型在低分辨率上预先培训到更高分辨率。当图像分辨率高时,GPU存储器消耗也是一个问题。为了解决这些问题,我们提出了几种技术,通过使用Swin Transformer作为案例研究来说明:1)归一化技术和缩放的余弦注意力,提高大视觉模型的稳定性; 2)一种日志间隔的连续位置偏置技术,以有效地将在低分辨率图像和窗口预先训练的模型转移到其更高分辨率的对应物。此外,我们分享了我们的关键实施细节,导致GPU内存消耗的大量节省,从而使得用常规GPU培训大型视觉模型可行。使用这些技术和自我监督的预训练,我们成功培训了强大的3B往返变压器模型,并有效地将其转移到涉及高分辨率图像或窗口的各种视觉任务,实现了各种最先进的准确性基准。
translated by 谷歌翻译
我们介绍混音,一个用于对象检测的新培训范例,可以免费提高现有探测器的性能。混合通过利用不同优点的增强来增强数据增强,同时排除某些可能对培训可能有害的培训样本的强大增强。此外,它通过结合可以补偿这些错误的伪框来解决人类注释中的本地化噪声和丢失标签。通过对探测器的自动启动,可以使用这些混音功能,这可以用于预测对强大增强的训练难度,以及由于神经网络对标记错误的鲁棒性而产生可靠的伪框。发现混音是在Coco DataSet上的各种探测器上带来一致的改进。特别是,使用Reset-50 \ Cite {REN2015Faster}更快的R-CNN \ CITE {REN2015FAST}骨架的性能从41.7地图改进到44.0地图,以及CASCADE-RCNN \ CITE {CAI2018CASCADE}的准确性-small \ cite {liu2021swin}骨干从50.9地图提出到52.8地图。代码和模型将在\ url {https://github.com/mendelxu/mixtraining}上公开可用。
translated by 谷歌翻译
在弱照明条件下捕获的图像可能会严重降低图像质量。求解一系列低光图像的降解可以有效地提高图像的视觉质量和高级视觉任务的性能。在本研究中,提出了一种新的基于RETINEX的实际网络(R2RNET),用于低光图像增强,其包括三个子网:DECOM-NET,DENOISE-NET和RELIGHT-NET。这三个子网分别用于分解,去噪,对比增强和细节保存。我们的R2RNET不仅使用图像的空间信息来提高对比度,还使用频率信息来保留细节。因此,我们的模型对所有退化的图像进行了更强大的结果。与在合成图像上培训的最先前的方法不同,我们收集了第一个大型现实世界配对的低/普通灯图像数据集(LSRW数据集),以满足培训要求,使我们的模型具有更好的现实世界中的泛化性能场景。对公共数据集的广泛实验表明,我们的方法在定量和视觉上以现有的最先进方法优于现有的现有方法。此外,我们的结果表明,通过使用我们在低光条件下的方法获得的增强的结果,可以有效地改善高级视觉任务(即面部检测)的性能。我们的代码和LSRW数据集可用于:https://github.com/abcdef2000/r2rnet。
translated by 谷歌翻译
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO testdev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-theart by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures. The code and models are publicly available at https://github. com/microsoft/Swin-Transformer.
translated by 谷歌翻译
在本文中,我们研究了在深网(DNS)中修剪的重要性,以及(1)修剪高度参数的DNS之间的Yin&Yang关系,这些DNS已从随机初始化训练,并且(2)培训“巧妙”的小型DNS,这些DNS已“巧妙”。初始化。在大多数情况下,从业者只能诉诸随机初始化,因此强烈需要对DN修剪建立扎实的理解。当前的文献在很大程度上仍然是经验的,缺乏对修剪如何影响DNS决策边界,如何解释修剪以及如何设计相应的原则修剪技术的理论理解。为了解决这些问题,我们建议在连续分段仿射(CPA)DNS的理论分析中采用最新进展。从这个角度来看,我们将能够检测到早期的鸟类(EB)票务现象,为当前的修剪技术提供可解释性,并制定有原则的修剪策略。在研究的每个步骤中,我们进行了广泛的实验,以支持我们的主张和结果;尽管我们的主要目标是增强对DN修剪的当前理解,而不是开发一种新的修剪方法,但我们的样条修剪标准在层和全球修剪方面与先进的修剪方法相当甚至超过了。
translated by 谷歌翻译