许多研究人员使用标签信息来提高推荐系统推荐技术的性能。检查用户的标志将有助于获得他们的兴趣,并导致建议的更准确。由于用户定义的标签是自由选择的,因此在没有任何限制的情况下,在确定它们的确切含义和标签的相似性时出现问题。另一方面,由于用户在许多数据集中使用不同语言的自由定义,使用杂散和本体找到标签的含义并不是很有效。因此,本文使用数学和统计方法来确定词汇相似性和共发生标签解决方案以分配语义相似性。另一方面,由于用户随着时间的流利的变化,本文已经考虑了用于确定标签的相似性的共发生标签中标记分配的时间。然后基于这些相似之处创建图形。为了建模用户的利益,通过使用社区检测方法确定标签的社区。因此,基于标签社区和资源之间的相似性的建议。已经使用基于“美味”数据集的评估,使用两个精度和召回标准进行了所提出的方法的性能。评价结果表明,与其他方法相比,所提出的方法的精度和召回显着改善。
translated by 谷歌翻译