Deep learning technology has made great progress in multi-view 3D reconstruction tasks. At present, most mainstream solutions establish the mapping between views and shape of an object by assembling the networks of 2D encoder and 3D decoder as the basic structure while they adopt different approaches to obtain aggregation of features from several views. Among them, the methods using attention-based fusion perform better and more stable than the others, however, they still have an obvious shortcoming -- the strong independence of each view during predicting the weights for merging leads to a lack of adaption of the global state. In this paper, we propose a global-aware attention-based fusion approach that builds the correlation between each branch and the global to provide a comprehensive foundation for weights inference. In order to enhance the ability of the network, we introduce a novel loss function to supervise the shape overall and propose a dynamic two-stage training strategy that can effectively adapt to all reconstructors with attention-based fusion. Experiments on ShapeNet verify that our method outperforms existing SOTA methods while the amount of parameters is far less than the same type of algorithm, Pix2Vox++. Furthermore, we propose a view-reduction method based on maximizing diversity and discuss the cost-performance tradeoff of our model to achieve a better performance when facing heavy input amount and limited computational cost.
translated by 谷歌翻译
现有的最佳3D对象检测器通常依赖于多模式融合策略。但是,由于忽略了特定于模式的有用信息,因此从根本上限制了该设计,并最终阻碍了模型性能。为了解决这一局限性,在这项工作中,我们介绍了一种新型的模式相互作用策略,在该策略中,在整个过程中学习和维护单个单模式表示,以使其在物体检测过程中被利用其独特特征。为了实现这一建议的策略,我们设计了一个深层互动体系结构,其特征是多模式代表性交互编码器和多模式预测交互解码器。大规模Nuscenes数据集的实验表明,我们所提出的方法经常超过所有先前的艺术。至关重要的是,我们的方法在竞争激烈的Nuscenes对象检测排行榜上排名第一。
translated by 谷歌翻译
自动驾驶中的3D对象检测旨在推理3D世界中感兴趣的对象的“什么”和“在哪里”。遵循先前2D对象检测的传统智慧,现有方法通常采用垂直轴的规范笛卡尔坐标系。但是,我们共轭这并不符合自我汽车的视角的本质,因为每个板载摄像头都以激进(非垂体)轴的成像几何形状感知到了楔形的楔形世界。因此,在本文中,我们主张对极性坐标系的开发,并提出一个新的极性变压器(极性形式),以在Bird's-eye-View(BEV)中更准确的3D对象检测(BEV),仅作为输入仅作为输入的多相机2D图像。具体而言,我们设计了一个基于交叉注意的极性检测头,而无需限制输入结构的形状以处理不规则的极性网格。为了解决沿极性距离维度的不受约束的物体量表变化,我们进一步引入了多个层状表示策略。结果,我们的模型可以通过参与序列到序列时尚的相应图像观察来充分利用极性表示,但要受几何约束。对Nuscenes数据集进行的彻底实验表明,我们的极性形式的表现明显优于最先进的3D对象检测替代方案,并且在BEV语义分割任务上产生了竞争性能。
translated by 谷歌翻译
会话推荐系统(CRS)旨在捕获用户的当前意图,并通过实时多转交流交互提供建议。作为人机互动系统,CRS必须改善用户体验。但是,大多数CRS方法忽略了用户体验的重要性。在本文中,我们为CRS提出了两个关键点,以改善用户体验:(1)像人类一样说话,人类可以根据当前的对话环境以不同的风格说话。 (2)识别精细颗粒的意图,即使对于相同的话语,不同的用户也具有多种良好的意图,这与用户的固有偏好有关。根据观察结果,我们提出了一个新颖的CRS模型,即创建的定制对话推荐系统(CCRS),该系统从三个角度从三个角度定制了用户的CRS模型。对于类似人类的对话服务,我们提出了多式对话响应生成器,该响应响应生成器选择了语音发言的上下文感知语言风格。为了提供个性化的建议,我们在用户固有的偏好的指导下从对话上下文中提取用户当前的细粒度意图。最后,为了自定义每个用户的模型参数,我们从元学习的角度训练模型。广泛的实验和一系列分析表明,我们的CCR在推荐和对话服务上的优势。
translated by 谷歌翻译
大多数真实的知识图(kg)远非完整和全面。这个问题激发了预测最合理的缺失事实以完成给定的kg,即知识图完成(KGC)。但是,现有的kgc方法遇到了两个主要问题,1)虚假负面问题,即,采样的负面培训实例可能包括潜在的真实事实; 2)数据稀疏问题,即真实事实仅解释了所有可能事实的一小部分。为此,我们提出了针对KGC的对抗数据增强(PUDA)的积极未标记的学习。特别是,PUDA针对KGC任务量身定制了正标记的风险估计器,以解决虚假的负面问题。此外,为了解决数据稀疏问题,PUDA通过在积极的无标记的Minimax游戏中统一对抗性培训和积极的未标记学习来实现数据增强策略。现实世界基准数据集的广泛实验结果证明了我们提出的方法的有效性和兼容性。
translated by 谷歌翻译
冷启动问题在推荐系统中仍然是一个非常具有挑战性的问题。幸运的是,冷启动用户在辅助源域中的交互可以帮助目标域中的冷启动推荐。如何将用户的偏好从源域转移到目标域,是跨域推荐(CDR)中的关键问题,这是处理冷启动问题的有希望的解决方案。大多数现有方法模型用于传输所有用户的偏好。直观地,由于偏好因用户对用户而异,不同用户的偏好网桥应该是不同的。在这一行中,我们提出了一个名为个性化用户偏好的小说框架,用于跨域推荐(PTUPCDR)。具体地,学习了与用户特征嵌入的元网络,以生成个性化桥接功能以实现每个用户的个性化的偏好传送。要稳定地学习元网络,我们采用了面向任务的优化过程。利用元生成的个性化桥函数,用户在源域中的偏好嵌入可以转换为目标域,并且变换的用户偏好嵌入可以用作目标域中的冷启动用户的初始嵌入。使用大型现实数据集,我们进行广泛的实验,以评估PTUPCDR对冷启动和热启动阶段的有效性。代码已在https://github.com/easezyc/wsdm2022-ptupcdr中提供。
translated by 谷歌翻译
Convex function constrained optimization has received growing research interests lately. For a special convex problem which has strongly convex function constraints, we develop a new accelerated primal-dual first-order method that obtains an $\Ocal(1/\sqrt{\vep})$ complexity bound, improving the $\Ocal(1/{\vep})$ result for the state-of-the-art first-order methods. The key ingredient to our development is some novel techniques to progressively estimate the strong convexity of the Lagrangian function, which enables adaptive step-size selection and faster convergence performance. In addition, we show that the complexity is further improvable in terms of the dependence on some problem parameter, via a restart scheme that calls the accelerated method repeatedly. As an application, we consider sparsity-inducing constrained optimization which has a separable convex objective and a strongly convex loss constraint. In addition to achieving fast convergence, we show that the restarted method can effectively identify the sparsity pattern (active-set) of the optimal solution in finite steps. To the best of our knowledge, this is the first active-set identification result for sparsity-inducing constrained optimization.
translated by 谷歌翻译
已经开发了许多本体论,即描述逻辑(DL)知识库,以提供有关各个领域的丰富知识,并且其中许多基于ALC,即原型和表达的DL或其扩展。探索ALC本体论的主要任务是计算语义范围。符号方法可以保证声音和完整的语义需要,但对不一致和缺失信息敏感。为此,我们提出了一个模糊的ALC本体神经推理器Falcon。 Falcon使用模糊逻辑运算符为任意ALC本体论生成单个模型结构,并使用多个模型结构来计算语义索引。理论结果表明,保证猎鹰是计算ALC本体学语义索引的声音和完整算法。实验结果表明,Falcon不仅可以近似推理(不完整的本体理由)和chanseansissist的推理(因本体不一致的推理),还可以通过结合ALC本体的背景知识来改善生物医学领域的机器学习。
translated by 谷歌翻译
上肢控制和功能的丧失是中风后患者的不懈症状。这将使他们的日常生活活动施加艰辛。引入了超级机器人四肢(SRL)作为解决方案,以通过引入独立的新肢体来恢复损失的自由度(DOF)。 SRL中的致动系统可以分为刚性和软致动器。通过固有的安全性,成本和能源效率,软执行器已证明对刚性的刚性有利。但是,它们的刚度低,这危害了其准确性。可变的刚度执行器(VSA)是新开发的技术,已被证明可确保准确性和安全性。在本文中,我们介绍了基于可变刚度执行器的新型超级机器人肢。根据我们的知识,提议的概念验证SRL是第一个利用可变刚度执行器的人。开发的SRL将帮助中风后患者完成双重任务,例如用叉子和刀进食。说明了系统的建模,设计和实现。评估并通过预定义轨迹对其准确性进行了评估和验证。通过利用动量观察者进行碰撞检测来验证安全性,并通过软组织损伤测试评估了几种冲突后反应策略。通过标准的用户满意度问卷对援助过程进行定性验证。
translated by 谷歌翻译
磁共振图像(MRI)中的脑肿瘤分割(BTS)对于脑肿瘤诊断,癌症管理和研究目的至关重要。随着十年小型挑战的巨大成功以及CNN和Transformer算法的进步,已经提出了许多出色的BTS模型来解决BTS在不同技术方面的困难。但是,现有研究几乎没有考虑如何以合理的方式融合多模式图像。在本文中,我们利用了放射科医生如何从多种MRI模态诊断脑肿瘤的临床知识,并提出了一种称为CKD-TRANSBTS的临床知识驱动的脑肿瘤分割模型。我们没有直接串联所有模式,而是通过根据MRI的成像原理将输入方式分为两组来重新组织输入方式。具有拟议模态相关的跨意义块(MCCA)的双支支混合式编码器旨在提取多模式图像特征。所提出的模型以局部特征表示能力的能力来继承来自变压器和CNN的强度,以提供精确的病变边界和3D体积图像的远程特征提取。为了弥合变压器和CNN功能之间的间隙,我们提出了解码器中的反式和CNN功能校准块(TCFC)。我们将提出的模型与五个基于CNN的模型和六个基于Transformer的模型在Brats 2021挑战数据集上进行了比较。广泛的实验表明,与所有竞争对手相比,所提出的模型可实现最先进的脑肿瘤分割性能。
translated by 谷歌翻译