电子商务在通过互联网增强商人的能力方面已经大有帮助。为了有效地存储商品并正确安排营销资源,对他们来说,进行准确的总商品价值(GMV)预测非常重要。但是,通过数字化数据的缺乏进行准确的预测是不算平的。在本文中,我们提出了一个解决方案,以更好地预测Apay应用程序内的GMV。得益于Graph Neural网络(GNN),它具有很好的关联不同实体以丰富信息的能力,我们提出了Gaia,Gaia是一个图形神经网络(GNN)模型,具有时间移动意识注意。Gaia利用相关的电子销售商的销售信息,并根据时间依赖性学习邻居相关性。通过测试Apleay的真实数据集并与其他基线进行比较,Gaia表现出最佳性能。盖亚(Gaia)部署在模拟的在线环境中,与基线相比,这也取得了很大的进步。
translated by 谷歌翻译
为了以计算有效的方式部署深层模型,经常使用模型量化方法。此外,由于新的硬件支持混合的位算术操作,最近对混合精度量化(MPQ)的研究开始通过搜索网络中不同层和模块的优化位低宽,从而完全利用表示的能力。但是,先前的研究主要是在使用强化学习,神经体系结构搜索等的昂贵方案中搜索MPQ策略,或者简单地利用部分先验知识来进行位于刻度分配,这可能是有偏见和优势的。在这项工作中,我们提出了一种新颖的随机量化量化(SDQ)方法,该方法可以在更灵活,更全球优化的空间中自动学习MPQ策略,并具有更平滑的梯度近似。特别是,可区分的位宽参数(DBP)被用作相邻位意选择之间随机量化的概率因素。在获取最佳MPQ策略之后,我们将进一步训练网络使用熵感知的bin正则化和知识蒸馏。我们广泛评估了不同硬件(GPU和FPGA)和数据集的多个网络的方法。 SDQ的表现优于所有最先进的混合或单个精度量化,甚至比较低的位置量化,甚至比各种重新网络和Mobilenet家族的全精度对应物更好,这表明了我们方法的有效性和优势。
translated by 谷歌翻译
神经建筑搜索(NAS)算法可节省人类专家的巨大劳动。最近的进步进一步将计算开销降低到负担得起的水平。但是,由于挑剔的程序和监督的学习范式,将NAS技术部署在现实世界应用程序中仍然很麻烦。在这项工作中,我们通过允许自我审议并保留在搜索阶段发现的伴随的权重,提出了自我监管和举重的神经体系结构搜索(SSWP-NAS)作为当前NAS框架的扩展。因此,我们将NAS的工作流程简化为单阶段和无代理程序。实验表明,通过所提出的框架搜索的架构实现了CIFAR-10,CIFAR-100和Imagenet数据集上的最新精度,而无需使用手动标签。此外,我们表明,使用伴随的权重作为初始化始终优于随机初始化和两阶段的权重预训练方法,在半监督的学习方案下清晰的边缘。代码可在https://github.com/lzvv123456/sswp-nas上公开获得。
translated by 谷歌翻译
近年来,文本的风格特性吸引了计算语言学研究人员。具体来说,研究人员研究了文本样式转移(TST)任务,该任务旨在在保留其样式独立内容的同时改变文本的风格属性。在过去的几年中,已经开发了许多新颖的TST算法,而该行业利用这些算法来实现令人兴奋的TST应用程序。由于这种共生,TST研究领域迅速发展。本文旨在对有关文本样式转移的最新研究工作进行全面审查。更具体地说,我们创建了一种分类法来组织TST模型,并提供有关最新技术状况的全面摘要。我们回顾了针对TST任务的现有评估方法,并进行了大规模的可重复性研究,我们在两个公开可用的数据集上实验基准了19个最先进的TST TST算法。最后,我们扩展了当前趋势,并就TST领域的新开发发展提供了新的观点。
translated by 谷歌翻译
The ability to jointly learn from multiple modalities, such as text, audio, and visual data, is a defining feature of intelligent systems. While there have been promising advances in designing neural networks to harness multimodal data, the enormous success of data augmentation currently remains limited to single-modality tasks like image classification. Indeed, it is particularly difficult to augment each modality while preserving the overall semantic structure of the data; for example, a caption may no longer be a good description of an image after standard augmentations have been applied, such as translation. Moreover, it is challenging to specify reasonable transformations that are not tailored to a particular modality. In this paper, we introduce LeMDA, Learning Multimodal Data Augmentation, an easy-to-use method that automatically learns to jointly augment multimodal data in feature space, with no constraints on the identities of the modalities or the relationship between modalities. We show that LeMDA can (1) profoundly improve the performance of multimodal deep learning architectures, (2) apply to combinations of modalities that have not been previously considered, and (3) achieve state-of-the-art results on a wide range of applications comprised of image, text, and tabular data.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Multimodal image-text models have shown remarkable performance in the past few years. However, evaluating their robustness against distribution shifts is crucial before adopting them in real-world applications. In this paper, we investigate the robustness of 9 popular open-sourced image-text models under common perturbations on five tasks (image-text retrieval, visual reasoning, visual entailment, image captioning, and text-to-image generation). In particular, we propose several new multimodal robustness benchmarks by applying 17 image perturbation and 16 text perturbation techniques on top of existing datasets. We observe that multimodal models are not robust to image and text perturbations, especially to image perturbations. Among the tested perturbation methods, character-level perturbations constitute the most severe distribution shift for text, and zoom blur is the most severe shift for image data. We also introduce two new robustness metrics (MMI and MOR) for proper evaluations of multimodal models. We hope our extensive study sheds light on new directions for the development of robust multimodal models.
translated by 谷歌翻译
Real-time monocular 3D reconstruction is a challenging problem that remains unsolved. Although recent end-to-end methods have demonstrated promising results, tiny structures and geometric boundaries are hardly captured due to their insufficient supervision neglecting spatial details and oversimplified feature fusion ignoring temporal cues. To address the problems, we propose an end-to-end 3D reconstruction network SST, which utilizes Sparse estimated points from visual SLAM system as additional Spatial guidance and fuses Temporal features via a novel cross-modal attention mechanism, achieving more detailed reconstruction results. We propose a Local Spatial-Temporal Fusion module to exploit more informative spatial-temporal cues from multi-view color information and sparse priors, as well a Global Spatial-Temporal Fusion module to refine the local TSDF volumes with the world-frame model from coarse to fine. Extensive experiments on ScanNet and 7-Scenes demonstrate that SST outperforms all state-of-the-art competitors, whilst keeping a high inference speed at 59 FPS, enabling real-world applications with real-time requirements.
translated by 谷歌翻译
Image-text retrieval in remote sensing aims to provide flexible information for data analysis and application. In recent years, state-of-the-art methods are dedicated to ``scale decoupling'' and ``semantic decoupling'' strategies to further enhance the capability of representation. However, these previous approaches focus on either the disentangling scale or semantics but ignore merging these two ideas in a union model, which extremely limits the performance of cross-modal retrieval models. To address these issues, we propose a novel Scale-Semantic Joint Decoupling Network (SSJDN) for remote sensing image-text retrieval. Specifically, we design the Bidirectional Scale Decoupling (BSD) module, which exploits Salience Feature Extraction (SFE) and Salience-Guided Suppression (SGS) units to adaptively extract potential features and suppress cumbersome features at other scales in a bidirectional pattern to yield different scale clues. Besides, we design the Label-supervised Semantic Decoupling (LSD) module by leveraging the category semantic labels as prior knowledge to supervise images and texts probing significant semantic-related information. Finally, we design a Semantic-guided Triple Loss (STL), which adaptively generates a constant to adjust the loss function to improve the probability of matching the same semantic image and text and shorten the convergence time of the retrieval model. Our proposed SSJDN outperforms state-of-the-art approaches in numerical experiments conducted on four benchmark remote sensing datasets.
translated by 谷歌翻译
Although existing semi-supervised learning models achieve remarkable success in learning with unannotated in-distribution data, they mostly fail to learn on unlabeled data sampled from novel semantic classes due to their closed-set assumption. In this work, we target a pragmatic but under-explored Generalized Novel Category Discovery (GNCD) setting. The GNCD setting aims to categorize unlabeled training data coming from known and novel classes by leveraging the information of partially labeled known classes. We propose a two-stage Contrastive Affinity Learning method with auxiliary visual Prompts, dubbed PromptCAL, to address this challenging problem. Our approach discovers reliable pairwise sample affinities to learn better semantic clustering of both known and novel classes for the class token and visual prompts. First, we propose a discriminative prompt regularization loss to reinforce semantic discriminativeness of prompt-adapted pre-trained vision transformer for refined affinity relationships. Besides, we propose a contrastive affinity learning stage to calibrate semantic representations based on our iterative semi-supervised affinity graph generation method for semantically-enhanced prompt supervision. Extensive experimental evaluation demonstrates that our PromptCAL method is more effective in discovering novel classes even with limited annotations and surpasses the current state-of-the-art on generic and fine-grained benchmarks (with nearly $11\%$ gain on CUB-200, and $9\%$ on ImageNet-100) on overall accuracy.
translated by 谷歌翻译