Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译
Reinforcement learning (RL) is one of the most important branches of AI. Due to its capacity for self-adaption and decision-making in dynamic environments, reinforcement learning has been widely applied in multiple areas, such as healthcare, data markets, autonomous driving, and robotics. However, some of these applications and systems have been shown to be vulnerable to security or privacy attacks, resulting in unreliable or unstable services. A large number of studies have focused on these security and privacy problems in reinforcement learning. However, few surveys have provided a systematic review and comparison of existing problems and state-of-the-art solutions to keep up with the pace of emerging threats. Accordingly, we herein present such a comprehensive review to explain and summarize the challenges associated with security and privacy in reinforcement learning from a new perspective, namely that of the Markov Decision Process (MDP). In this survey, we first introduce the key concepts related to this area. Next, we cover the security and privacy issues linked to the state, action, environment, and reward function of the MDP process, respectively. We further highlight the special characteristics of security and privacy methodologies related to reinforcement learning. Finally, we discuss the possible future research directions within this area.
translated by 谷歌翻译
In this paper, we propose PanoViT, a panorama vision transformer to estimate the room layout from a single panoramic image. Compared to CNN models, our PanoViT is more proficient in learning global information from the panoramic image for the estimation of complex room layouts. Considering the difference between a perspective image and an equirectangular image, we design a novel recurrent position embedding and a patch sampling method for the processing of panoramic images. In addition to extracting global information, PanoViT also includes a frequency-domain edge enhancement module and a 3D loss to extract local geometric features in a panoramic image. Experimental results on several datasets demonstrate that our method outperforms state-of-the-art solutions in room layout prediction accuracy.
translated by 谷歌翻译
Recently, the success of pre-training in text domain has been fully extended to vision, audio, and cross-modal scenarios. The proposed pre-training models of different modalities are showing a rising trend of homogeneity in their model structures, which brings the opportunity to implement different pre-training models within a uniform framework. In this paper, we present TencentPretrain, a toolkit supporting pre-training models of different modalities. The core feature of TencentPretrain is the modular design. The toolkit uniformly divides pre-training models into 5 components: embedding, encoder, target embedding, decoder, and target. As almost all of common modules are provided in each component, users can choose the desired modules from different components to build a complete pre-training model. The modular design enables users to efficiently reproduce existing pre-training models or build brand-new one. We test the toolkit on text, vision, and audio benchmarks and show that it can match the performance of the original implementations.
translated by 谷歌翻译
This work explores an efficient approach to establish a foundational video-text model for tasks including open-vocabulary video classification, text-to-video retrieval, video captioning and video question-answering. We present VideoCoCa that reuses a pretrained image-text contrastive captioner (CoCa) model and adapt it to video-text tasks with minimal extra training. While previous works adapt image-text models with various cross-frame fusion modules (for example, cross-frame attention layer or perceiver resampler) and finetune the modified architecture on video-text data, we surprisingly find that the generative attentional pooling and contrastive attentional pooling layers in the image-text CoCa design are instantly adaptable to ``flattened frame embeddings'', yielding a strong zero-shot transfer baseline for many video-text tasks. Specifically, the frozen image encoder of a pretrained image-text CoCa takes each video frame as inputs and generates \(N\) token embeddings per frame for totally \(T\) video frames. We flatten \(N \times T\) token embeddings as a long sequence of frozen video representation and apply CoCa's generative attentional pooling and contrastive attentional pooling on top. All model weights including pooling layers are directly loaded from an image-text CoCa pretrained model. Without any video or video-text data, VideoCoCa's zero-shot transfer baseline already achieves state-of-the-art results on zero-shot video classification on Kinetics 400/600/700, UCF101, HMDB51, and Charades, as well as zero-shot text-to-video retrieval on MSR-VTT and ActivityNet Captions. We also explore lightweight finetuning on top of VideoCoCa, and achieve strong results on video question-answering (iVQA, MSRVTT-QA, MSVD-QA) and video captioning (MSR-VTT, ActivityNet, Youcook2). Our approach establishes a simple and effective video-text baseline for future research.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Recently, neural network based methods have shown their power in learning more expressive features on the task of knowledge graph embedding (KGE). However, the performance of deep methods often falls behind the shallow ones on simple graphs. One possible reason is that deep models are difficult to train, while shallow models might suffice for accurately representing the structure of the simple KGs. In this paper, we propose a neural network based model, named DeepE, to address the problem, which stacks multiple building blocks to predict the tail entity based on the head entity and the relation. Each building block is an addition of a linear and a non-linear function. The stacked building blocks are equivalent to a group of learning functions with different non-linear depth. Hence, DeepE allows deep functions to learn deep features, and shallow functions to learn shallow features. Through extensive experiments, we find DeepE outperforms other state-of-the-art baseline methods. A major advantage of DeepE is the robustness. DeepE achieves a Mean Rank (MR) score that is 6%, 30%, 65% lower than the best baseline methods on FB15k-237, WN18RR and YAGO3-10. Our design makes it possible to train much deeper networks on KGE, e.g. 40 layers on FB15k-237, and without scarifying precision on simple relations.
translated by 谷歌翻译
本文考虑了跟踪大量小组目标的问题。通常,在大多数跟踪方案中,多目标都被认为具有独立的运动,并且分离良好。但是,对于小组目标跟踪(GTT),组内的目标是紧密间隔并以协调方式移动,组可以分裂或合并,并且组中的目标数可能很大,这会导致更具挑战性的数据关联,过滤和计算问题。在信仰传播(BP)框架内,我们通过共同推断目标存在变量,组结构,数据关联和目标状态提出了可扩展的群体目标信念传播(GTBP)方法。该方法可以通过在设计因子图上进行信仰传播来有效计算这些变量边际后验分布的近似值。结果,GTBP能够捕获组结构的变化,例如组拆分和合并。此外,我们将目标的演变建模为可能的组结构和相应概率指定的组或单目标运动的合作。这种灵活的建模可实现多个组目标和未组目标的无缝和同时跟踪。特别是,GTBP具有出色的可扩展性和低计算复杂性。它不仅保持与BP相同的可伸缩性,即在传感器测量的数量中线性缩放,并在目标数量中二次缩放,而且仅在保留的组分区数量中线性缩放。最后,提出了数值实验,以证明所提出的GTBP方法的有效性和可伸缩性。
translated by 谷歌翻译
伴随的药物给药会引起药物 - 药物相互作用(DDIS)。某些药物组合是有益的,但其他药物组合可能会引起以前未记录的负面影响。以前关于DDI预测的工作通常依赖于手工设计的领域知识,这是努力获得的。在这项工作中,我们提出了一个新型模型,即分子亚结构网络(MSAN),以有效预测药物对分子结构的潜在DDI。我们采用类似变压器的子结构提取模块,以获取与药物分子的各种子结构模式相关的固定代表媒介。然后,两种药物的子结构之间的相互作用强度将由基于相似性的相互作用模块捕获。在图形编码之前,我们还执行一个子结构删除增强,以减轻过度拟合。实际数据集的实验结果表明,我们提出的模型实现了最新的性能。我们还表明,通过案例研究,我们的模型的预测是高度解释的。
translated by 谷歌翻译
自动检测视网膜结构,例如视网膜血管(RV),凹起的血管区(FAZ)和视网膜血管连接(RVJ),对于了解眼睛的疾病和临床决策非常重要。在本文中,我们提出了一种新型的基于投票的自适应特征融合多任务网络(VAFF-NET),用于在光学相干性层析成像(OCTA)中对RV,FAZ和RVJ进行联合分割,检测和分类。提出了一个特定于任务的投票门模块,以适应并融合两个级别的特定任务的不同功能:来自单个编码器的不同空间位置的特征,以及来自多个编码器的功能。特别是,由于八八座图像中微脉管系统的复杂性使视网膜血管连接连接到分叉/跨越具有挑战性的任务的同时定位和分类,因此我们通过结合热图回归和网格分类来专门设计任务头。我们利用来自各种视网膜层的三个不同的\ textit {en face}血管造影,而不是遵循仅使用单个\ textit {en face}的现有方法。为了促进进一步的研究,已经发布了这些数据集的部分数据集,并已发布了公共访问:https://github.com/imed-lab/vaff-net。
translated by 谷歌翻译