本文介绍了Simmim,这是一个简单的蒙面图像建模框架。我们在没有特殊设计的情况下简化了最近提出的相关方法,例如通过离散VAE或聚类的块状掩蔽和令牌化。要研究蒙版图像建模任务学习良好的表示,我们系统地研究了我们框架中的主要组成部分,并发现每个组件的简单设计揭示了非常强烈的表示学习性能:1)用中等的输入图像随机掩蔽输入图像大型蒙面贴片尺寸(例如,32)进行了强大的文本前任务; 2)通过直接回归预测RGB值的原始像素不比具有复杂设计的补丁分类方法更差; 3)预测头可以像线性层一样光,性能比较重的形式更差。使用VIT-B,我们的方法通过预训练在此数据集上进行预培训,我们的方法在ImageNet-1K上实现了83.8%的精细调整精度,超过了以前最佳方法+ 0.6%。当应用于大约6.5亿参数的更大模型时,SwinV2-H,它在Imagenet-1K上使用Imagenet-1K数据实现了87.1%的前1个精度。我们还利用这种方法来促进3B模型(SWINV2-G)的培训,比以前的实践中的数据减少40美元,我们在四个代表性视觉基准上实现了最先进的。代码和模型将在https://github.com/microsoft/simmim公开使用。
translated by 谷歌翻译
我们提出了用于将Swin变压器缩放到3亿参数的技术,并使其能够使用高达1,536美元的图像培训1,536美元。通过缩放容量和分辨率,Swin变压器在四个代表视觉基准上设置新记录:84.0%的Top-1在Imagenet-V2图像分类准确度,63.1 / 54.4盒/掩模地图上的Coco对象检测,59.9 Miou在Ade20K语义细分中,在动力学-400视频动作分类上的86.8%的前1个精度。我们的技术通常适用于缩放视觉模型,这尚未广泛探索为NLP语言模型,部分原因是培训和应用中的困难:1)视觉模型经常面临规模的不稳定问题,2)许多下游愿景任务需要高分辨率图像或窗口,并且目前尚不清楚如何有效地将模型在低分辨率上预先培训到更高分辨率。当图像分辨率高时,GPU存储器消耗也是一个问题。为了解决这些问题,我们提出了几种技术,通过使用Swin Transformer作为案例研究来说明:1)归一化技术和缩放的余弦注意力,提高大视觉模型的稳定性; 2)一种日志间隔的连续位置偏置技术,以有效地将在低分辨率图像和窗口预先训练的模型转移到其更高分辨率的对应物。此外,我们分享了我们的关键实施细节,导致GPU内存消耗的大量节省,从而使得用常规GPU培训大型视觉模型可行。使用这些技术和自我监督的预训练,我们成功培训了强大的3B往返变压器模型,并有效地将其转移到涉及高分辨率图像或窗口的各种视觉任务,实现了各种最先进的准确性基准。
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Normalizing flow is a class of deep generative models for efficient sampling and density estimation. In practice, the flow often appears as a chain of invertible neural network blocks; to facilitate training, existing works have regularized flow trajectories and designed special network architectures. The current paper develops a neural ODE flow network inspired by the Jordan-Kinderleherer-Otto (JKO) scheme, which allows efficient block-wise training of the residual blocks and avoids inner loops of score matching or variational learning. As the JKO scheme unfolds the dynamic of gradient flow, the proposed model naturally stacks residual network blocks one-by-one, reducing the memory load and difficulty of performing end-to-end training of deep flow networks. We also develop adaptive time reparameterization of the flow network with a progressive refinement of the trajectory in probability space, which improves the model training efficiency and accuracy in practice. Using numerical experiments with synthetic and real data, we show that the proposed JKO-iFlow model achieves similar or better performance in generating new samples compared with existing flow and diffusion models at a significantly reduced computational and memory cost.
translated by 谷歌翻译
Score-based diffusion models have captured widespread attention and funded fast progress of recent vision generative tasks. In this paper, we focus on diffusion model backbone which has been much neglected before. We systematically explore vision Transformers as diffusion learners for various generative tasks. With our improvements the performance of vanilla ViT-based backbone (IU-ViT) is boosted to be on par with traditional U-Net-based methods. We further provide a hypothesis on the implication of disentangling the generative backbone as an encoder-decoder structure and show proof-of-concept experiments verifying the effectiveness of a stronger encoder for generative tasks with ASymmetriC ENcoder Decoder (ASCEND). Our improvements achieve competitive results on CIFAR-10, CelebA, LSUN, CUB Bird and large-resolution text-to-image tasks. To the best of our knowledge, we are the first to successfully train a single diffusion model on text-to-image task beyond 64x64 resolution. We hope this will motivate people to rethink the modeling choices and the training pipelines for diffusion-based generative models.
translated by 谷歌翻译
This paper studies the distribution estimation of contaminated data by the MoM-GAN method, which combines generative adversarial net (GAN) and median-of-mean (MoM) estimation. We use a deep neural network (DNN) with a ReLU activation function to model the generator and discriminator of the GAN. Theoretically, we derive a non-asymptotic error bound for the DNN-based MoM-GAN estimator measured by integral probability metrics with the $b$-smoothness H\"{o}lder class. The error bound decreases essentially as $n^{-b/p}\vee n^{-1/2}$, where $n$ and $p$ are the sample size and the dimension of input data. We give an algorithm for the MoM-GAN method and implement it through two real applications. The numerical results show that the MoM-GAN outperforms other competitive methods when dealing with contaminated data.
translated by 谷歌翻译
Currently, most deep learning methods cannot solve the problem of scarcity of industrial product defect samples and significant differences in characteristics. This paper proposes an unsupervised defect detection algorithm based on a reconstruction network, which is realized using only a large number of easily obtained defect-free sample data. The network includes two parts: image reconstruction and surface defect area detection. The reconstruction network is designed through a fully convolutional autoencoder with a lightweight structure. Only a small number of normal samples are used for training so that the reconstruction network can be A defect-free reconstructed image is generated. A function combining structural loss and $\mathit{L}1$ loss is proposed as the loss function of the reconstruction network to solve the problem of poor detection of irregular texture surface defects. Further, the residual of the reconstructed image and the image to be tested is used as the possible region of the defect, and conventional image operations can realize the location of the fault. The unsupervised defect detection algorithm of the proposed reconstruction network is used on multiple defect image sample sets. Compared with other similar algorithms, the results show that the unsupervised defect detection algorithm of the reconstructed network has strong robustness and accuracy.
translated by 谷歌翻译
As machine learning being used increasingly in making high-stakes decisions, an arising challenge is to avoid unfair AI systems that lead to discriminatory decisions for protected population. A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints, which achieves Pareto efficiency when trading off performance against fairness. Among various fairness metrics, the ones based on the area under the ROC curve (AUC) are emerging recently because they are threshold-agnostic and effective for unbalanced data. In this work, we formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints. This problem can be reformulated as a min-max optimization problem with min-max constraints, which we solve by stochastic first-order methods based on a new Bregman divergence designed for the special structure of the problem. We numerically demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
translated by 谷歌翻译
Salient object detection (SOD) aims to determine the most visually attractive objects in an image. With the development of virtual reality technology, 360{\deg} omnidirectional image has been widely used, but the SOD task in 360{\deg} omnidirectional image is seldom studied due to its severe distortions and complex scenes. In this paper, we propose a Multi-Projection Fusion and Refinement Network (MPFR-Net) to detect the salient objects in 360{\deg} omnidirectional image. Different from the existing methods, the equirectangular projection image and four corresponding cube-unfolding images are embedded into the network simultaneously as inputs, where the cube-unfolding images not only provide supplementary information for equirectangular projection image, but also ensure the object integrity of the cube-map projection. In order to make full use of these two projection modes, a Dynamic Weighting Fusion (DWF) module is designed to adaptively integrate the features of different projections in a complementary and dynamic manner from the perspective of inter and intra features. Furthermore, in order to fully explore the way of interaction between encoder and decoder features, a Filtration and Refinement (FR) module is designed to suppress the redundant information between the feature itself and the feature. Experimental results on two omnidirectional datasets demonstrate that the proposed approach outperforms the state-of-the-art methods both qualitatively and quantitatively.
translated by 谷歌翻译