在过去的25年中,我们目睹了机器学习在编译器领域的广泛应用。选择和相位订购问题。但是,有限的作品已在最先进的编译器(即LLVM)上游,以将前者无缝集成到编译器的优化管道中,以便由用户容易部署。 MLGO是此类项目的第一个项目之一,它仅努力使用强化学习使用基于ML的INLINER来减少二进制的代码大小。本文介绍了mlgoperf;第一个端到端框架,能够使用LLVM的ML Inliner优化性能。它采用二级ML模型来生成用于训练重新定位的增强学习代理的奖励,该辅助剂以前由MLGO用作主要模型。它通过预测分析功能的函数的速度加速来做到这一点,并为主要模型提供快速训练框架,否则将是不切实际的。实验结果表明,MLGOPERF在LLVM在O3时的优化方面的优化分别为SPEC CPU2006和CBENCH基准分别获得了1.8%和2.2%。此外,提出的方法为我们的基准测试带来了自动点守则区域的26%,可以将其转化为额外的3.7%速度值。
translated by 谷歌翻译
肺癌是最致命的癌症之一,部分诊断和治疗取决于肿瘤的准确描绘。目前是最常见的方法的人以人为本的分割,须遵守观察者间变异性,并且考虑到专家只能提供注释的事实,也是耗时的。最近展示了有前途的结果,自动和半自动肿瘤分割方法。然而,随着不同的研究人员使用各种数据集和性能指标验证了其算法,可靠地评估这些方法仍然是一个开放的挑战。通过2018年IEEE视频和图像处理(VIP)杯竞赛创建的计算机断层摄影扫描(LOTUS)基准测试的肺起源肿瘤分割的目标是提供唯一的数据集和预定义的指标,因此不同的研究人员可以开发和以统一的方式评估他们的方法。 2018年VIP杯始于42个国家的全球参与,以获得竞争数据。在注册阶段,有129名成员组成了来自10个国家的28个团队,其中9个团队将其达到最后阶段,6队成功完成了所有必要的任务。简而言之,竞争期间提出的所有算法都是基于深度学习模型与假阳性降低技术相结合。三种决赛选手开发的方法表明,有希望的肿瘤细分导致导致越来越大的努力应降低假阳性率。本次竞争稿件概述了VIP-Cup挑战,以及所提出的算法和结果。
translated by 谷歌翻译
目的:本文侧重于开发鲁棒和准确的加工解决方案,用于连续和较低的血压(BP)监测。在这方面,提出了一种基于深入的基于深度学习的框架,用于计算收缩和舒张BP上的低延迟,连续和无校准的上限和下界。方法:称为BP-Net,所提出的框架是一种新型卷积架构,可提供更长的有效内存,同时实现偶然拨号卷积和残留连接的卓越性能。利用深度学习的实际潜力在提取内在特征(深度特征)并增强长期稳健性,BP-Net使用原始的心电图(ECG)和光电觉体图(PPG)信号而无需提取任何形式的手工制作功能在现有解决方案中很常见。结果:通过利用最近文献中使用的数据集未统一和正确定义的事实,基准数据集由来自PhysoioNet获得的模拟I和MIMIC-III数据库构建。所提出的BP-Net是基于该基准数据集进行评估,展示了有希望的性能并显示出优异的普遍能力。结论:提出的BP-NET架构比规范复发网络更准确,增强了BP估计任务的长期鲁棒性。意义:建议的BP-NET架构解决了现有的BP估计解决方案的关键缺点,即,严重依赖于提取手工制作的特征,例如脉冲到达时间(PAT),以及;缺乏稳健性。最后,构造的BP-Net DataSet提供了一个统一的基础,用于评估和比较基于深度学习的BP估计算法。
translated by 谷歌翻译
With the advent of Neural Style Transfer (NST), stylizing an image has become quite popular. A convenient way for extending stylization techniques to videos is by applying them on a per-frame basis. However, such per-frame application usually lacks temporal-consistency expressed by undesirable flickering artifacts. Most of the existing approaches for enforcing temporal-consistency suffers from one or more of the following drawbacks. They (1) are only suitable for a limited range of stylization techniques, (2) can only be applied in an offline fashion requiring the complete video as input, (3) cannot provide consistency for the task of stylization, or (4) do not provide interactive consistency-control. Note that existing consistent video-filtering approaches aim to completely remove flickering artifacts and thus do not respect any specific consistency-control aspect. For stylization tasks, however, consistency-control is an essential requirement where a certain amount of flickering can add to the artistic look and feel. Moreover, making this control interactive is paramount from a usability perspective. To achieve the above requirements, we propose an approach that can stylize video streams while providing interactive consistency-control. Apart from stylization, our approach also supports various other image processing filters. For achieving interactive performance, we develop a lite optical-flow network that operates at 80 Frames per second (FPS) on desktop systems with sufficient accuracy. We show that the final consistent video-output using our flow network is comparable to that being obtained using state-of-the-art optical-flow network. Further, we employ an adaptive combination of local and global consistent features and enable interactive selection between the two. By objective and subjective evaluation, we show that our method is superior to state-of-the-art approaches.
translated by 谷歌翻译
This paper presents our solutions for the MediaEval 2022 task on DisasterMM. The task is composed of two subtasks, namely (i) Relevance Classification of Twitter Posts (RCTP), and (ii) Location Extraction from Twitter Texts (LETT). The RCTP subtask aims at differentiating flood-related and non-relevant social posts while LETT is a Named Entity Recognition (NER) task and aims at the extraction of location information from the text. For RCTP, we proposed four different solutions based on BERT, RoBERTa, Distil BERT, and ALBERT obtaining an F1-score of 0.7934, 0.7970, 0.7613, and 0.7924, respectively. For LETT, we used three models namely BERT, RoBERTa, and Distil BERTA obtaining an F1-score of 0.6256, 0.6744, and 0.6723, respectively.
translated by 谷歌翻译
Machine learning is the dominant approach to artificial intelligence, through which computers learn from data and experience. In the framework of supervised learning, for a computer to learn from data accurately and efficiently, some auxiliary information about the data distribution and target function should be provided to it through the learning model. This notion of auxiliary information relates to the concept of regularization in statistical learning theory. A common feature among real-world datasets is that data domains are multiscale and target functions are well-behaved and smooth. In this paper, we propose a learning model that exploits this multiscale data structure and discuss its statistical and computational benefits. The hierarchical learning model is inspired by the logical and progressive easy-to-hard learning mechanism of human beings and has interpretable levels. The model apportions computational resources according to the complexity of data instances and target functions. This property can have multiple benefits, including higher inference speed and computational savings in training a model for many users or when training is interrupted. We provide a statistical analysis of the learning mechanism using multiscale entropies and show that it can yield significantly stronger guarantees than uniform convergence bounds.
translated by 谷歌翻译
Transformer language models (TLMs) are critical for most NLP tasks, but they are difficult to create for low-resource languages because of how much pretraining data they require. In this work, we investigate two techniques for training monolingual TLMs in a low-resource setting: greatly reducing TLM size, and complementing the masked language modeling objective with two linguistically rich supervised tasks (part-of-speech tagging and dependency parsing). Results from 7 diverse languages indicate that our model, MicroBERT, is able to produce marked improvements in downstream task evaluations relative to a typical monolingual TLM pretraining approach. Specifically, we find that monolingual MicroBERT models achieve gains of up to 18% for parser LAS and 11% for NER F1 compared to a multilingual baseline, mBERT, while having less than 1% of its parameter count. We conclude reducing TLM parameter count and using labeled data for pretraining low-resource TLMs can yield large quality benefits and in some cases produce models that outperform multilingual approaches.
translated by 谷歌翻译
Practical applications of mechanical metamaterials often involve solving inverse problems where the objective is to find the (multiple) microarchitectures that give rise to a given set of properties. The limited resolution of additive manufacturing techniques often requires solving such inverse problems for specific sizes. One should, therefore, find multiple microarchitectural designs that exhibit the desired properties for a specimen with given dimensions. Moreover, the candidate microarchitectures should be resistant to fatigue and fracture, meaning that peak stresses should be minimized as well. Such a multi-objective inverse design problem is formidably difficult to solve but its solution is the key to real-world applications of mechanical metamaterials. Here, we propose a modular approach titled 'Deep-DRAM' that combines four decoupled models, including two deep learning models (DLM), a deep generative model (DGM) based on conditional variational autoencoders (CVAE), and direct finite element (FE) simulations. Deep-DRAM (deep learning for the design of random-network metamaterials) integrates these models into a unified framework capable of finding many solutions to the multi-objective inverse design problem posed here. The integrated framework first introduces the desired elastic properties to the DGM, which returns a set of candidate designs. The candidate designs, together with the target specimen dimensions are then passed to the DLM which predicts their actual elastic properties considering the specimen size. After a filtering step based on the closeness of the actual properties to the desired ones, the last step uses direct FE simulations to identify the designs with the minimum peak stresses.
translated by 谷歌翻译
Dual encoders are now the dominant architecture for dense retrieval. Yet, we have little understanding of how they represent text, and why this leads to good performance. In this work, we shed light on this question via distributions over the vocabulary. We propose to interpret the vector representations produced by dual encoders by projecting them into the model's vocabulary space. We show that the resulting distributions over vocabulary tokens are intuitive and contain rich semantic information. We find that this view can explain some of the failure cases of dense retrievers. For example, the inability of models to handle tail entities can be explained via a tendency of the token distributions to forget some of the tokens of those entities. We leverage this insight and propose a simple way to enrich query and passage representations with lexical information at inference time, and show that this significantly improves performance compared to the original model in out-of-domain settings.
translated by 谷歌翻译
Automatic differentiation (AD) is a technique for computing the derivative of a function represented by a program. This technique is considered as the de-facto standard for computing the differentiation in many machine learning and optimisation software tools. Despite the practicality of this technique, the performance of the differentiated programs, especially for functional languages and in the presence of vectors, is suboptimal. We present an AD system for a higher-order functional array-processing language. The core functional language underlying this system simultaneously supports both source-to-source forward-mode AD and global optimisations such as loop transformations. In combination, gradient computation with forward-mode AD can be as efficient as reverse mode, and the Jacobian matrices required for numerical algorithms such as Gauss-Newton and Levenberg-Marquardt can be efficiently computed.
translated by 谷歌翻译