我们提出了一个具有物理信息的神经网络,作为生物样品层析成像重建的正向模型。我们证明,通过用Helmholtz方程训练该网络作为物理损失,我们可以准确预测散射场。可以证明,可以对不同的样本进行微调的验证网络,并用于与其他数值解决方案更快地解决散射问题。我们通过数值和实验结果评估我们的方法。我们的物理知识神经网络可以推广到任何前进和反向散射问题。
translated by 谷歌翻译
光学衍射断层扫描(ODT)是一种新兴的3D成像技术,用于半透明样品的折射率(RI)的3D重建。已经提出了各种逆模型,以基于对不同样品(例如BORN和RYTOV近似)的全息检测来重建3D RI。但是,这种近似通常会遭受所谓的缺失键问题,从而导致沿光轴的最终重建伸长。已经提出了不同的迭代方案,以解决依靠物理前向模型和旨在填充K空间的错误函数的丢失锥问题,从而消除缺失的问题问题并达到更好的重建精度。在本文中,我们提出了一种使用3D神经网络(NN)的不同方法。 NN经过基于光波传播物理的物理模型得出的成本函数训练。 3D NN以3D RI重建(即出生或Rytov)的初始猜测开始,并旨在根据错误函数重建更好的3D重建。通过这种技术,可以对NN进行训练,而无需任何示例,即不适当的重建(出生或Rytov)与地面真相(真实形状)之间的关系。
translated by 谷歌翻译
3D重建问题中的一个关键问题是如何训练机器人或机器人以模型3D对象。在实时系统(例如自动驾驶汽车)中导航等许多任务直接取决于此问题。这些系统通常具有有限的计算能力。尽管近年来3D重建系统在3D重建系统中取得了长足的进展,但由于现有方法的高复杂性和计算需求,将它们应用于自动驾驶汽车中的导航系统等实时系统仍然具有挑战性。这项研究解决了以更快(实时)方式重建单视图像中显示的对象的当前问题。为此,开发了一个简单而强大的深度神经框架。提出的框架由两个组件组成:特征提取器模块和3D发电机模块。我们将点云表示为我们的重建模块的输出。将Shapenet数据集用于将方法与计算时间和准确性方面的现有结果进行比较。模拟证明了所提出的方法的出色性能。索引术语现实时间3D重建,单视图重建,监督学习,深神经网络
translated by 谷歌翻译
本文为基于MPC的基于MPC模型的增强学习方法的计划模块提出了一个新的评分功能,以解决使用奖励功能得分轨迹的固有偏见。所提出的方法使用折现价值和折扣价值提高了现有基于MPC的MBRL方法的学习效率。该方法利用最佳轨迹来指导策略学习,并根据现实世界更新其状态行动价值函数,并增强板载数据。在选定的Mujoco健身环境中评估了所提出方法的学习效率,以及在学习的模拟机器人模型中学习运动技能。结果表明,所提出的方法在学习效率和平均奖励回报方面优于当前的最新算法。
translated by 谷歌翻译
航空公司今天对于及时运送人和商品至关重要。这些飞机时间表的任何延误都可能在任何给定时间可能破坏数千名员工的业务和交易。因此,精确的飞行延迟预测对航空业和乘客旅行是有益的。最近的研究重点是使用人工智能算法来预测飞行延迟的可能性。较早的预测算法是为特定航空路线或机场设计的。许多目前的飞行延迟预测算法依赖于微小的样本,并且具有挑战性地理解,几乎没有用于机器学习实施的空间。这项研究通过分析美利坚合众国国内航班的数据来开发飞行延迟预测系统。拟议的模型了解导致飞行延迟和取消的因素以及出发与到达延迟之间的联系。
translated by 谷歌翻译
与人类相互作用的机器人和人造代理应该能够在没有偏见和不平等的情况下这样做,但是众所周知,面部感知系统对某些人来说比其他人的工作更差。在我们的工作中,我们旨在建立一个可以以更透明和包容的方式感知人类的系统。具体而言,我们专注于对人脸的动态表达,由于隐私问题以及面部本质上可识别的事实,这很难为广泛的人收集。此外,从互联网收集的数据集不一定代表一般人群。我们通过提供SIM2REAL方法来解决这个问题,在该方法中,我们使用一套3D模拟的人类模型,使我们能够创建一个可审核的合成数据集覆盖1)在六种基本情绪之外,代表性不足的面部表情(例如混乱); 2)种族或性别少数群体; 3)机器人可能在现实世界中遇到人类的广泛视角。通过增强包含包含4536个样本的合成数据集的123个样本的小型动态情感表达数据集,我们在自己的数据集上的准确性提高了15%,与外部基准数据集的11%相比,我们的精度为11%,与同一模型体系结构的性能相比没有合成训练数据。我们还表明,当体系结构的特征提取权重从头开始训练时,这一额外的步骤专门针对种族少数群体的准确性。
translated by 谷歌翻译
每种编程语言都有官方文档,以指导开发人员使用API,方法和类。但是,在某些情况下,官方文档不是获取所需信息的有效方法。结果,开发人员可以咨询其他来源(例如,堆栈溢出,GitHub),以了解有关API的更多信息,其实施,用法和其他官方文档可能无法提供的信息。在这项研究中,我们提出了一种自动方法,通过使用NLP技术利用非正式文档来生成API和方法的摘要。我们的发现表明,生成的摘要具有竞争力,可以用作指导开发人员在软件开发和维护任务方面的补充来源。
translated by 谷歌翻译
一组解决方案中的多元化已成为进化计算社区中的热门研究主题。事实证明,它有益于以多种方式优化问题,例如计算一套高质量的解决方案并获得不完美建模的鲁棒性。在文献中,我们首次适应了现实世界中的组合问题的进化多样性优化,即患者的入学计划。我们引入了一种进化算法,以在每种溶液质量的一组解决方案中实现结构多样性。我们还引入了一个突变操作员,偏向于多样性最大化。最后,我们通过模拟证明了多样性对上述问题的重要性。
translated by 谷歌翻译
卷积神经网络(CNN)已成为医疗图像分割任务的共识。但是,由于卷积操作的性质,它们在建模长期依赖性和空间相关性时受到限制。尽管最初开发了变压器来解决这个问题,但它们未能捕获低级功能。相比之下,证明本地和全球特征对于密集的预测至关重要,例如在具有挑战性的环境中细分。在本文中,我们提出了一种新型方法,该方法有效地桥接了CNN和用于医学图像分割的变压器。具体而言,我们使用开创性SWIN变压器模块和一个基于CNN的编码器设计两个多尺度特征表示。为了确保从上述两个表示获得的全局和局部特征的精细融合,我们建议在编码器编码器结构的跳过连接中提出一个双层融合(DLF)模块。在各种医学图像分割数据集上进行的广泛实验证明了Hiformer在计算复杂性以及定量和定性结果方面对其他基于CNN的,基于变压器和混合方法的有效性。我们的代码可在以下网址公开获取:https://github.com/amirhossein-kz/hiformer
translated by 谷歌翻译
在本文中,我们提出了一个自然的单个偏好(IP)稳定性的概念,该概念要求每个数据点平均更接近其自身集群中的点,而不是其他群集中的点。我们的概念可以从几个角度的动机,包括游戏理论和算法公平。我们研究了与我们提出的概念有关的几个问题。我们首先表明,确定给定数据集通常允许进行IP稳定的聚类通常是NP-HARD。结果,我们探索了在某些受限度量空间中查找IP稳定聚类的有效算法的设计。我们提出了一种poly Time算法,以在实际线路上找到满足精确IP稳定性的聚类,并有效地算法来找到针对树度量的IP稳定2聚类。我们还考虑放松稳定性约束,即,与其他任何集群相比,每个数据点都不应太远。在这种情况下,我们提供具有不同保证的多时间算法。我们在实际数据集上评估了一些算法和几种标准聚类方法。
translated by 谷歌翻译