每种编程语言都有官方文档,以指导开发人员使用API,方法和类。但是,在某些情况下,官方文档不是获取所需信息的有效方法。结果,开发人员可以咨询其他来源(例如,堆栈溢出,GitHub),以了解有关API的更多信息,其实施,用法和其他官方文档可能无法提供的信息。在这项研究中,我们提出了一种自动方法,通过使用NLP技术利用非正式文档来生成API和方法的摘要。我们的发现表明,生成的摘要具有竞争力,可以用作指导开发人员在软件开发和维护任务方面的补充来源。
translated by 谷歌翻译
自动源代码摘要是一种任务,它生成有关用于对这些代码实体的理解的方法和类别的用于方法和类的总结信息。已经提出了多种方法和技术在规范摘要中进行监督和无监督学习,但是,它们主要集中在为一段代码生成摘要。此外,很少有效利用非官方文件。本文提出了一种自动和新的方法,总结了堆栈溢出中讨论的Android API方法,以便我们认为这项研究中的非官方文档。我们的方法将API方法的名称作为输入,并基于该API方法的堆栈溢出讨论生成自然语言摘要。我们已经进行了一项调查,涉及16个Android开发人员,以评估我们自动生成的摘要的质量,并将它们与官方Android文档进行比较。我们的结果表明,虽然开发人员在普通方面找到官方文件更有用的虽然,所产生的摘要也具有竞争力,特别是用于提供实施细节,并且可以用作指导软件开发和维护任务中开发人员的补充来源。
translated by 谷歌翻译
上下文:堆栈溢出对于寻求编程问题答案的软件开发人员非常有帮助。先前的研究表明,越来越多的问题质量低,因此从潜在的答案者那里获得了更少的关注。 Gao等。提出了一个基于LSTM的模型(即BilstM-CC),以自动从代码片段中生成问题标题,以提高问题质量。但是,只有在问题主体中使用代码段无法为标题生成提供足够的信息,而LSTMS无法捕获令牌之间的远程依赖性。目的:本文提出了基于深度学习的新型模型CCBERT,旨在通过充分利用整个问题主体的双模式信息来增强问题标题生成的性能。方法:CCBERT遵循编码器范式范式,并使用Codebert将问题主体编码为隐藏的表示形式,堆叠的变压器解码器以生成预测的代币,以及附加的复制注意层来完善输出分布。编码器和解码器都执行多头自我注意操作,以更好地捕获远程依赖性。本文构建了一个数据集,该数据集包含大约200,000个高质量问题,该数据从Stack Overflow正式发布的数据中滤除,以验证CCBERT模型的有效性。结果:CCBERT优于数据集上的所有基线模型。对仅代码和低资源数据集进行的实验表明,CCBERT的优势性能较小。人类评估还显示了CCBERT关于可读性和相关标准的出色表现。
translated by 谷歌翻译
评论是源代码的重要组成部分,是文档的主要来源。这引起了人们对使用大量注释的兴趣训练或评估消耗或生产它们的工具,例如生成甲骨文,甚至是从注释中生成代码,或自动生成代码摘要。这项工作大部分对评论的结构和质量做出了强烈的假设,例如假设它们主要由适当的英语句子组成。但是,我们对这些用例的现有评论的实际质量知之甚少。评论通常包含在其他类型的文本中看不到的独特结构和元素,并且从中过滤或提取信息需要额外的谨慎。本文探讨了来自GitHub的840个最受欢迎的开源项目和Srilab数据集的8422个项目的Python评论的内容和质量,并且Na \“ Ive vs.深入过滤的影响都可以使用现有注释来用于使用现有注释。培训和评估产生评论的系统。
translated by 谷歌翻译
(源)代码摘要旨在以自然语言的形式自动为给定代码段生成摘要/注释。此类摘要在帮助开发人员理解和维护源代码方面起着关键作用。现有的代码摘要技术可以分类为提取方法和抽象方法。提取方法使用检索技术从代码段中提取重要语句和关键字的子集,并生成一个摘要,该摘要保留了重要语句和关键字中的事实详细信息。但是,这样的子集可能会错过标识符或实体命名,因此,产生的摘要的自然性通常很差。抽象方法可以生成类似人写的摘要,从而利用神经机器翻译域的编码器模型。然而,生成的摘要通常会错过重要的事实细节。为了通过保留的事实细节生成类似人写的摘要,我们提出了一个新颖的提取和吸收框架。框架中的提取模块执行了提取代码摘要的任务,该任务列入了代码段,并预测包含关键事实细节的重要陈述。框架中的抽象模块执行了抽象代码摘要的任务,该任务是在整个代码段和并行的重要陈述中进行的,并生成了简洁而人工写的类似的自然语言摘要。我们通过在涉及六种编程语言的三个数据集上进行广泛的实验来评估称为EACS的有效性。实验结果表明,在所有三种广泛使用的指标(包括BLEU,流星和Rough-l)方面,EACS明显优于最先进的技术。
translated by 谷歌翻译
Stack Overflow是最受欢迎的编程社区之一,开发人员可以为他们遇到的问题寻求帮助。然而,如果没有经验的开发人员无法清楚地描述他们的问题,那么他们很难吸引足够的关注并获得预期的答案。我们提出了M $ _3 $ NSCT5,这是一种自动从给定代码片段生成多个帖子标题的新颖方法。开发人员可以使用生成的标题查找密切相关的帖子并完成其问题描述。 M $ _3 $ NSCT5使用Codet5骨干,这是一种具有出色语言理解和发电能力的预训练的变压器模型。为了减轻歧义问题,即在不同背景下可以将相同的代码片段与不同的标题保持一致,我们提出了最大的边缘多元核抽样策略,以一次产生多个高质量和不同的标题候选者,以便开发人员选择。我们构建了一个大规模数据集,其中包含890,000个问题帖子,其中涵盖了八种编程语言,以验证M $ _3 $ NSCT5的有效性。 BLEU和胭脂指标的自动评估结果表明,M $ _3 $ NSCT5的优势比六个最先进的基线模型。此外,具有值得信赖结果的人类评估也证明了我们对现实世界应用方法的巨大潜力。
translated by 谷歌翻译
随着大型语言模型的出现,抽象性摘要的方法取得了长足的进步,从而在应用程序中使用了帮助知识工人处理笨拙的文档收集的潜力。一个这样的环境是民权诉讼交换所(CRLC)(https://clearinghouse.net),其中发布了有关大规模民权诉讼,服务律师,学者和公众的信息。如今,CRLC中的摘要需要对律师和法律专业的学生进行广泛的培训,这些律师和法律专业的学生花费数小时了解多个相关文件,以便产生重要事件和结果的高质量摘要。在这种持续的现实世界摘要工作的激励下,我们引入了Multi-iplesum,这是由正在进行的CRLC写作中绘制的9,280个专家作者的摘要集。鉴于源文档的长度,多文章介绍了一个具有挑战性的多文档摘要任务,通常每个情况超过200页。此外,多胎sum与其多个目标摘要中的其他数据集不同,每个数据集都处于不同的粒度(从一句“极端”摘要到超过五百个单词的多段落叙述)。我们提供了广泛的分析,表明,尽管培训数据(遵守严格的内容和样式准则)中的摘要很高,但最新的摘要模型在此任务上的表现较差。我们发布了多体式的摘要方法,以及促进应用程序的开发,以协助CRLC的任务https://multilexsum.github.io。
translated by 谷歌翻译
使用计算笔记本(例如,Jupyter Notebook),数据科学家根据他们的先前经验和外部知识(如在线示例)合理化他们的探索性数据分析(EDA)。对于缺乏关于数据集或问题的具体了解的新手或数据科学家,有效地获得和理解外部信息对于执行EDA至关重要。本文介绍了eDassistant,一个jupyterlab扩展,支持EDA的原位搜索示例笔记本电脑和有用的API的推荐,由搜索结果的新颖交互式可视化供电。代码搜索和推荐是由最先进的机器学习模型启用的,培训在线收集的EDA笔记本电脑的大型语料库。进行用户学习,以调查埃迪卡斯特和数据科学家的当前实践(即,使用外部搜索引擎)。结果证明了埃迪斯坦特的有效性和有用性,与会者赞赏其对EDA的顺利和环境支持。我们还报告了有关代码推荐工具的几种设计意义。
translated by 谷歌翻译
正在纳入数十种新工具和技术,以帮助开发人员,因为他们努力选择一种而不是其他人,这已成为震惊的根源。例如,开发人员至少有十个框架可用于开发Web应用程序,并在选择满足其需求的最佳框架时提出了一个难题。结果,开发人员正在不断搜索每个API,框架,工具等的所有好处和缺点。典型的方法之一是通过官方文档和讨论来检查所有功能。这种方法是耗时的,通常使难以确定哪些方面对特定开发人员最重要,以及特定方面对整个社区是否重要。在本文中,我们使用了从stackoverflow帖子中收集的基准API方面数据集(意见器),并观察了Transformer模型(Bert,Roberta,Distilbert和XLNet)在检测有关基线支持矢量的文本开发人员讨论中的软件方面时的表现机器(SVM)型号。通过广泛的实验,我们发现变压器模型改善了大多数方面的基线SVM的性能,即``performance'',``安全性'',``可用性'',``可用性'',``bug''',``bug''' '和``其他''。但是,这些模型未能理解某些方面(例如,“社区”和“陶器”),其性能取决于方面。同样,与Distilbert这样的较小体系结构相比,XLNET等较大的体系结构在解释软件方面无效。
translated by 谷歌翻译
我们提出了一个文本编辑器,以帮助用户计划,结构并反思其写作过程。它使用自动文本摘要提供了不断更新的段落摘要作为边缘注释。摘要级别范围从全文到选定的(中央)句子,一直到关键字的集合。为了了解用户在写作过程中如何与该系统进行交互,我们进行了两项用户研究(n = 4和n = 8),人们在其中写了有关给定主题和文章的分析文章。作为关键发现,这些摘要使用户对他们的写作有了外部视角,并帮助他们修改了草稿段落的内容和范围。人们进一步使用该工具快速获得文本概述,并制定了整合自动摘要中见解的策略。从更广泛的角度来看,这项工作探索并突出了为作家设计AI工具的价值,其自然语言处理(NLP)功能超出了直接文本生成和更正。
translated by 谷歌翻译
随着大数据挖掘和现代大量文本分析的出现和普及,自动化文本摘要在从文档中提取和检索重要信息而变得突出。这项研究从单个和多个文档的角度研究了自动文本摘要的各个方面。摘要是将庞大的文本文章凝结成简短的摘要版本的任务。为了摘要目的,该文本的大小减小,但保留了关键的重要信息并保留原始文档的含义。这项研究介绍了潜在的Dirichlet分配(LDA)方法,用于从具有与基因和疾病有关的主题进行摘要的医学科学期刊文章进行主题建模。在这项研究中,基于Pyldavis Web的交互式可视化工具用于可视化所选主题。可视化提供了主要主题的总体视图,同时允许并将深度含义归因于流行率单个主题。这项研究提出了一种新颖的方法来汇总单个文档和多个文档。结果表明,使用提取性摘要技术在处理后的文档中考虑其主题患病率的概率,纯粹是通过考虑其术语来排名的。 Pyldavis可视化描述了探索主题与拟合LDA模型的术语的灵活性。主题建模结果显示了主题1和2中的流行率。该关联表明,本研究中的主题1和2中的术语之间存在相似性。使用潜在语义分析(LSA)和面向召回的研究测量LDA和提取性摘要方法的功效,以评估模型的可靠性和有效性。
translated by 谷歌翻译
The internet has had a dramatic effect on the healthcare industry, allowing documents to be saved, shared, and managed digitally. This has made it easier to locate and share important data, improving patient care and providing more opportunities for medical studies. As there is so much data accessible to doctors and patients alike, summarizing it has become increasingly necessary - this has been supported through the introduction of deep learning and transformer-based networks, which have boosted the sector significantly in recent years. This paper gives a comprehensive survey of the current techniques and trends in medical summarization
translated by 谷歌翻译
会话代理显示了允许用户使用语言与移动设备进行交互的承诺。但是,要使用自然语言执行不同的UI任务,开发人员通常需要为每个特定任务创建单独的数据集和模型,这是昂贵且耗费的。最近,预先训练的大型语言模型(LLMS)被证明能够在目标任务中有几个示例提示时能够概括到各种下游任务。本文调查了使用单个LLM与移动UI进行多功能对话交互的可行性。我们建议一个设计空间,以在协作完成移动任务时对用户和代理之间的对话进行分类。我们设计提示技术以使LLM适应移动UIS上的对话任务。实验表明,我们的方法可以与体面的表现相互作用,从而表现出其可行性。我们讨论我们的工作用例及其对基于语言的移动互动的影响。
translated by 谷歌翻译
在印度法院制度中,长期以来一直是一个问题。有超过4千万的案件。对于法律利益相关者来说,手动总结数百个文件是一项耗时且繁琐的任务。随着机器学习的发展,许多用于文本摘要的最新模型已经出现。独立于域的模型在法律文本方面做得不好,由于缺乏公开可用的数据集,对印度法律制度的这些模型进行微调是有问题的。为了提高独立模型的性能,作者提出了一种在印度背景下使法律文本正常化的方法。作者试验了两个与法律文本摘要的最先进的域独立模型,即Bart和Pegasus。 Bart和Pegasus以提取性和抽象的摘要为方面,以了解文本归一化方法的有效性。汇总文本由域专家在多个参数和使用胭脂指标上评估。它表明,在具有域独立模型的法律文本中,提出的文本归一化方法有效。
translated by 谷歌翻译
物联网是一个快速新兴的范式,现在几乎涵盖了我们现代生活的各个方面。因此,确保物联网设备的安全至关重要。物联网设备与传统计算可能有所不同,从而在物联网设备中设计和实施适当的安全措施可能具有挑战性。我们观察到,物联网开发人员在堆栈溢出(SO)等开发人员论坛中讨论了与安全相关的挑战。但是,我们发现,在SO中,物联网安全讨论也可以埋葬在非安全性讨论中。在本文中,我们旨在了解物联网开发人员在将安全实践和技术应用于IoT设备时面临的挑战。我们有两个目标:(1)开发一个模型,该模型可以自动在SO中找到与安全有关的物联网讨论,并且(2)研究模型输出以了解与IoT开发人员安全相关的挑战。首先,我们从中下载了53k帖子,因此包含有关物联网的讨论。其次,我们手动将53K帖子的5,919个句子标记为1或0。第三,我们使用此基准测试来研究一套深度学习变压器模型。最佳性能模型称为SECBOT。第四,我们将SECBOT应用于整个帖子,并找到大约30K安全性的句子。第五,我们将主题建模应用于与安全有关的句子。然后,我们标记并分类主题。第六,我们分析了主题的演变。我们发现(1)SECBOT是基于深度学习模型Roberta的重建。 SECBOT提供的最佳F1分数为0.935,(2)SECBOT错误分类的样本中有六个错误类别。当关键字/上下文是模棱两可的(例如,网关可以是安全网关或简单网关)时,SECBOT主要是错误的,(3)有9个安全主题分为三个类别:软件,硬件和网络,以及(4)最多的主题属于软件安全性,然后是网络安全。
translated by 谷歌翻译
在当今的现代数字世界中,我们有许多在线问答平台,例如Stack Exchange,Quora和GFG,它们是人们交流和互相帮助的媒介。在本文中,我们分析了堆栈溢出在帮助新手进行编程方面的有效性。该平台上的每个用户都会经历旅程。在最初的12个月中,我们认为它们是新手。在12个月后,他们属于以下类别之一:经验丰富,潜伏或好奇。每个问题都有分配给它的标签,我们观察到具有某些特定标签的问题的响应时间更快,表明该领域的活跃社区比其他领域的社区。该平台截至2013年开始稳定增长,之后它开始下降,但是最近在2020年大流行期间,我们可以在平台上看到恢复活力的活动。
translated by 谷歌翻译
收集与特定API方法相关的API示例,用法和提及在诸如堆栈溢出之类的场地上的讨论中不是一个微不足道的问题。它需要努力正确认识讨论是否指的是开发人员/工具正在搜索的API方法。线程的内容包括描述API方法在讨论中的参与和包含API调用的代码片段中的文本段落,可以参考给定的API方法。利用此观察,我们开发FacOS,一种特定于背景算法,可以在讨论中捕获段落和代码片段的语义和语法信息。FACOS将基于语法的单词的分数与来自Codebert的精细调整的预测模型的分数相结合。Facos在F1分数方面将最先进的方法击败了13.9%。
translated by 谷歌翻译
有一个关键的需求,可以自动为开发人员提供小任务生成代码。 Sackoverflow等网站通过在小片段中提供解决方案提供了一种简单的方式,该解决方案提供了对开发人员想要代码的任何任务问题的完整答案。自然语言处理和特别质疑答案系统对解决这些任务非常有帮助。在本文中,我们开发了一个双倍的深度学习模型:SEQ2SEQ和一个二进制分类器,它采用意图(在自然语言中)和Python中的代码片段。我们培养了SEQ2Seq模型中的意图和代码话语,在那里我们决定将隐藏层嵌入来自编码器的隐藏层的效果来表示intent,而且类似地使用解码器的隐藏层嵌入式代码序列。然后我们组合这些嵌入物,然后培训一个简单的二进制神经网络分类器模型,以预测来自SEQ2Seq模型的预测代码序列正确回答了意图。我们发现隐藏的状态层的嵌入式略高于来自构造词汇的常规标准嵌入。除了由简单的任务代码片段基对的STAQC数据库之外,我们还在Conala DataSet上试验了我们的测试。我们经验证明,与使用SEQ2Seq模型的隐藏状态上下文向量相比,使用Python中的代码片段使用其他预先培训的嵌入式基于上下文。
translated by 谷歌翻译
在人口稠密的国家中,悬而未决的法律案件呈指数增长。需要开发处理和组织法律文件的技术。在本文中,我们引入了一个新的语料库来构建法律文件。特别是,我们介绍了用英语的法律判断文件进行的,这些文件被分割为局部和连贯的部分。这些零件中的每一个都有注释,标签来自预定义角色的列表。我们开发基线模型,以根据注释语料库自动预测法律文档中的修辞角色。此外,我们展示了修辞角色在提高总结和法律判断预测任务的绩效方面的应用。我们发布了语料库和基线模型代码以及纸张。
translated by 谷歌翻译
自动摘要方法是有效的,但可能患有低质量。相比之下,手动摘要很昂贵,但质量更高。人类和人工智能可以协作以提高总结性能吗?在类似的文本生成任务(例如机器翻译)中,人类AI合作的形式是“后编辑” AI生成的文本,可减少人类的工作量并提高AI输出的质量。因此,我们探讨了邮政编辑是否提供文本摘要中的优势。具体来说,我们对72名参与者进行了实验,将提供的后编辑摘要与手动摘要进行了摘要,以摘要质量,人为效率和用户在正式新闻(XSUM新闻)和非正式(REDDIT帖子)文本方面进行了比较。这项研究对何时编辑的文本摘要提供了宝贵的见解:在某些情况下(例如,何时参与者缺乏领域知识),但在其他情况下却没有帮助(例如,何时提供的摘要包括不准确的信息)。参与者的不同编辑策略和援助需求为未来的人类摘要系统提供了影响。
translated by 谷歌翻译