在人口稠密的国家中,悬而未决的法律案件呈指数增长。需要开发处理和组织法律文件的技术。在本文中,我们引入了一个新的语料库来构建法律文件。特别是,我们介绍了用英语的法律判断文件进行的,这些文件被分割为局部和连贯的部分。这些零件中的每一个都有注释,标签来自预定义角色的列表。我们开发基线模型,以根据注释语料库自动预测法律文档中的修辞角色。此外,我们展示了修辞角色在提高总结和法律判断预测任务的绩效方面的应用。我们发布了语料库和基线模型代码以及纸张。
translated by 谷歌翻译
法律文件是非结构化的,使用法律术语,并且具有相当长的长度,使得难以通过传统文本处理技术自动处理。如果文档可以在语义上分割成连贯的信息单位,法律文件处理系统将基本上受益。本文提出了一种修辞职位(RR)系统,用于将法律文件分组成语义连贯的单位:事实,论点,法规,问题,先例,裁决和比例。在法律专家的帮助下,我们提出了一套13个细粒度的修辞标志标签,并创建了与拟议的RR批发的新的法律文件有条件。我们开发一个系统,以将文件分段为修辞职位单位。特别是,我们开发了一种基于多任务学习的深度学习模型,文档修辞角色标签作为分割法律文件的辅助任务。我们在广泛地尝试各种深度学习模型,用于预测文档中的修辞角色,并且所提出的模型对现有模型显示出卓越的性能。此外,我们应用RR以预测法律案件的判断,并表明与基于变压器的模型相比,使用RR增强了预测。
translated by 谷歌翻译
自论证挖掘领域成立以来,在法律话语中识别,分类和分析的论点一直是研究的重要领域。但是,自然语言处理(NLP)研究人员的模型模型与法院决策中的注释论点与法律专家理解和分析法律论证的方式之间存在重大差异。尽管计算方法通常将论点简化为通用的前提和主张,但法律研究中的论点通常表现出丰富的类型,对于获得一般法律的特定案例和应用很重要。我们解决了这个问题,并做出了一些实质性的贡献,以推动该领域的前进。首先,我们在欧洲人权法院(ECHR)诉讼中为法律论点设计了新的注释计划,该计划深深植根于法律论证研究的理论和实践中。其次,我们编译和注释了373项法院判决(230万令牌和15K注释的论点跨度)的大量语料库。最后,我们训练一个论证挖掘模型,该模型胜过法律NLP领域中最先进的模型,并提供了彻底的基于专家的评估。所有数据集和源代码均可在https://github.com/trusthlt/mining-legal-arguments的开放lincenses下获得。
translated by 谷歌翻译
随着大型语言模型的出现,抽象性摘要的方法取得了长足的进步,从而在应用程序中使用了帮助知识工人处理笨拙的文档收集的潜力。一个这样的环境是民权诉讼交换所(CRLC)(https://clearinghouse.net),其中发布了有关大规模民权诉讼,服务律师,学者和公众的信息。如今,CRLC中的摘要需要对律师和法律专业的学生进行广泛的培训,这些律师和法律专业的学生花费数小时了解多个相关文件,以便产生重要事件和结果的高质量摘要。在这种持续的现实世界摘要工作的激励下,我们引入了Multi-iplesum,这是由正在进行的CRLC写作中绘制的9,280个专家作者的摘要集。鉴于源文档的长度,多文章介绍了一个具有挑战性的多文档摘要任务,通常每个情况超过200页。此外,多胎sum与其多个目标摘要中的其他数据集不同,每个数据集都处于不同的粒度(从一句“极端”摘要到超过五百个单词的多段落叙述)。我们提供了广泛的分析,表明,尽管培训数据(遵守严格的内容和样式准则)中的摘要很高,但最新的摘要模型在此任务上的表现较差。我们发布了多体式的摘要方法,以及促进应用程序的开发,以协助CRLC的任务https://multilexsum.github.io。
translated by 谷歌翻译
Though many algorithms can be used to automatically summarize legal case decisions, most fail to incorporate domain knowledge about how important sentences in a legal decision relate to a representation of its document structure. For example, analysis of a legal case summarization dataset demonstrates that sentences serving different types of argumentative roles in the decision appear in different sections of the document. In this work, we propose an unsupervised graph-based ranking model that uses a reweighting algorithm to exploit properties of the document structure of legal case decisions. We also explore the impact of using different methods to compute the document structure. Results on the Canadian Legal Case Law dataset show that our proposed method outperforms several strong baselines.
translated by 谷歌翻译
在法律文本中预先培训的基于变压器的预训练语言模型(PLM)的出现,法律领域中的自然语言处理受益匪浅。有经过欧洲和美国法律文本的PLM,最著名的是Legalbert。但是,随着印度法律文件的NLP申请量的迅速增加以及印度法律文本的区别特征,也有必要在印度法律文本上预先培训LMS。在这项工作中,我们在大量的印度法律文件中介绍了基于变压器的PLM。我们还将这些PLM应用于印度法律文件的几个基准法律NLP任务,即从事实,法院判决的语义细分和法院判决预测中的法律法规识别。我们的实验证明了这项工作中开发的印度特定PLM的实用性。
translated by 谷歌翻译
Laws and their interpretations, legal arguments and agreements\ are typically expressed in writing, leading to the production of vast corpora of legal text. Their analysis, which is at the center of legal practice, becomes increasingly elaborate as these collections grow in size. Natural language understanding (NLU) technologies can be a valuable tool to support legal practitioners in these endeavors. Their usefulness, however, largely depends on whether current state-of-the-art models can generalize across various tasks in the legal domain. To answer this currently open question, we introduce the Legal General Language Understanding Evaluation (LexGLUE) benchmark, a collection of datasets for evaluating model performance across a diverse set of legal NLU tasks in a standardized way. We also provide an evaluation and analysis of several generic and legal-oriented models demonstrating that the latter consistently offer performance improvements across multiple tasks.
translated by 谷歌翻译
学术研究是解决以前从未解决过的问题的探索活动。通过这种性质,每个学术研究工作都需要进行文献审查,以区分其Novelties尚未通过事先作品解决。在自然语言处理中,该文献综述通常在“相关工作”部分下进行。鉴于研究文件的其余部分和引用的论文列表,自动相关工作生成的任务旨在自动生成“相关工作”部分。虽然这项任务是在10年前提出的,但直到最近,它被认为是作为科学多文件摘要问题的变种。然而,即使在今天,尚未标准化了自动相关工作和引用文本生成的问题。在这项调查中,我们进行了一个元研究,从问题制定,数据集收集,方法方法,绩效评估和未来前景的角度来比较相关工作的现有文献,以便为读者洞察到国家的进步 - 最内容的研究,以及如何进行未来的研究。我们还调查了我们建议未来工作要考虑整合的相关研究领域。
translated by 谷歌翻译
Identification of named entities from legal texts is an essential building block for developing other legal Artificial Intelligence applications. Named Entities in legal texts are slightly different and more fine-grained than commonly used named entities like Person, Organization, Location etc. In this paper, we introduce a new corpus of 46545 annotated legal named entities mapped to 14 legal entity types. The Baseline model for extracting legal named entities from judgment text is also developed.
translated by 谷歌翻译
在本文中,我们研究了多语言句子嵌入的使用,以转移跨管辖区,法律制度(普通和民法),语言和域名的审判决策功能分割的预测模型(即语境)。利用原始环境之外的语言资源的机制在AI和法律中具有显着的潜在利益,因为法律制度,语言或传统之间的差异往往阻碍了更广泛的研究结果。我们使用跨语言可转换的门控复发单元(GRUS)分析使用语言无话句子表示的使用。调查不同背景之间的转移,我们开发了一种审判决策功能分割的注释方案。我们发现模特超出了他们接受培训的背景(例如,在美国的行政决定上培训的模型可以应用于意大利的刑法决定)。此外,我们发现在多种上下文上培训模型增加了鲁棒性并在评估先前看不见的上下文时提高整体性能。最后,我们发现,从所有上下文中汇集训练数据增强了模型的上下文性能。
translated by 谷歌翻译
生成法律文件摘要时,一项艰巨的任务是解决其论证性质的能力。我们介绍了一种简单的技术,可以通过将论点角色标签整合到摘要过程中来捕获法律文档的论证结构。使用预算语言模型的实验表明,我们提出的方法改善了强大基线的性能
translated by 谷歌翻译
诸如学术文章和商业报告之类的长期文件一直是详细说明重要问题和需要额外关注的复杂主题的标准格式。自动汇总系统可以有效地将长文档置于简短而简洁的文本中,以封装最重要的信息,从而在帮助读者的理解中很重要。最近,随着神经体系结构的出现,已经做出了重大的研究工作,以推动自动文本摘要系统,以及有关将这些系统扩展到长期文档领域的挑战的大量研究。在这项调查中,我们提供了有关长期文档摘要的研究的全面概述,以及其研究环境的三个主要组成部分的系统评估:基准数据集,汇总模型和评估指标。对于每个组成部分,我们在长期汇总的背景下组织文献,并进行经验分析,以扩大有关当前研究进度的观点。实证分析包括一项研究基准数据集的内在特征,摘要模型的多维分析以及摘要评估指标的综述。根据总体发现,我们通过提出可能在这个快速增长的领域中提出未来探索的方向来得出结论。
translated by 谷歌翻译
时间轴提供了最有效的方法之一,可以看到一段时间内发生的重要历史事实,从而呈现出从文本形式阅读等效信息的见解。通过利用生成的对抗性学习进行重要的句子分类,并通过吸收基于知识的标签来改善事件核心分辨率的性能,我们从多个(历史)文本文档中引入了两个分阶段的事件时间表生成的系统。我们在两个手动注释的历史文本文档上演示了我们的结果。我们的结果对历史学家,推进历史研究以及理解一个国家的社会政治格局的研究对历史学家来说非常有帮助。
translated by 谷歌翻译
自动推荐向特定法律案件的相关法律文章引起了很多关注,因为它可以大大释放人工劳动力,从而在大型法律数据库中寻找。然而,目前的研究只支持粗粒度推荐,其中所有相关文章都预测为整体,而无需解释每种文章与之相关的具体事实。由于一个案例可以由许多支持事实形成,因此遍历它们来验证推荐结果的正确性可能是耗时的。我们认为,在每个单一的事实和法律文章之间学习细粒度的对应,对于准确可靠的AI系统至关重要。通过这种动机,我们执行开创性的研究并创建一个手动注释的事实 - 文章的语料库。我们将学习视为文本匹配任务,并提出一个多级匹配网络来解决它。为了帮助模型更好地消化法律文章的内容,我们以随机森林的前提结论对形式解析物品。实验表明,解析的形式产生了更好的性能,结果模型超越了其他流行的文本匹配基线。此外,我们与先前的研究相比,并发现建立细粒度的事实 - 文章对应物可以通过大幅度提高建议准确性。我们最好的系统达到了96.3%的F1得分,使其具有实际使用潜力。它还可以显着提高法律决策预测的下游任务,将F1增加到12.7%。
translated by 谷歌翻译
人类表演的法律文件中句子的注释是许多基于机器学习的系统支持法律任务的重要先决条件。通常,注释是按顺序完成的,句子句子通常是耗时的,因此昂贵。在本文中,我们介绍了一个概念验证系统,用于横向注释句子。该方法基于观察到含义类似的句子通常在特定类型系统方面具有相同的标签。我们在允许注释器中使用此观察来快速查看和注释在整个文档语料库中使用与给定句子的语义类似的句子。在这里,我们介绍了系统的界面并经验评估方法。实验表明,横向注释有可能使注释过程更快,更加一致。
translated by 谷歌翻译
Identifying named entities such as a person, location or organization, in documents can highlight key information to readers. Training Named Entity Recognition (NER) models requires an annotated data set, which can be a time-consuming labour-intensive task. Nevertheless, there are publicly available NER data sets for general English. Recently there has been interest in developing NER for legal text. However, prior work and experimental results reported here indicate that there is a significant degradation in performance when NER methods trained on a general English data set are applied to legal text. We describe a publicly available legal NER data set, called E-NER, based on legal company filings available from the US Securities and Exchange Commission's EDGAR data set. Training a number of different NER algorithms on the general English CoNLL-2003 corpus but testing on our test collection confirmed significant degradations in accuracy, as measured by the F1-score, of between 29.4\% and 60.4\%, compared to training and testing on the E-NER collection.
translated by 谷歌翻译
深度学习的最新进展,尤其是编码器架构的发明,已大大改善了抽象性摘要系统的性能。尽管大多数研究都集中在书面文件上,但我们观察到过去几年对对话和多方对话的总结越来越兴趣。一个可以可靠地将人类对话的音频或笔录转换为删节版本的系统,该版本在讨论中最重要的一点上可以在各种现实世界中,从商务会议到医疗咨询再到客户都有价值服务电话。本文着重于多党会议的抽象性摘要,对与此任务相关的挑战,数据集和系统进行了调查,并讨论了未来研究的有希望的方向。
translated by 谷歌翻译
多文件摘要(MDS)是信息聚合的有效工具,它从与主题相关文档集群生成信息和简洁的摘要。我们的调查是,首先,系统地概述了最近的基于深度学习的MDS模型。我们提出了一种新的分类学,总结神经网络的设计策略,并进行全面的最先进的概要。我们突出了在现有文献中很少讨论的各种客观函数之间的差异。最后,我们提出了与这个新的和令人兴奋的领域有关的几个方向。
translated by 谷歌翻译
世界各地的隐私法律和法规的景观是复杂而不断变化的。国家和超国家法律,协议,法令和其他政府发行的规则构成了公司必须遵循的拼凑而成才能在国际上进行运作。为了检查该拼凑而成的状态和演变,我们介绍了1,043条隐私法,法规和准则的政府隐私指示语料库或GPI语料库,涵盖了182个司法管辖区。该语料库可以对法律焦点进行大规模定量和定性检查。我们检查了创建GPI的时间分布,并说明了过去50年中隐私立法的急剧增加,尽管较细粒度的检查表明,增加的速度取决于GPIS所说的个人数据类型。我们的探索还表明,大多数隐私法分别解决了相对较少的个人数据类型,这表明全面的隐私立法仍然很少见。此外,主题建模结果显示了GPI中常见主题的普遍性,例如财务,医疗保健和电信。最后,我们将语料库释放到研究界,以促进进一步的研究。
translated by 谷歌翻译
在印度法院制度中,长期以来一直是一个问题。有超过4千万的案件。对于法律利益相关者来说,手动总结数百个文件是一项耗时且繁琐的任务。随着机器学习的发展,许多用于文本摘要的最新模型已经出现。独立于域的模型在法律文本方面做得不好,由于缺乏公开可用的数据集,对印度法律制度的这些模型进行微调是有问题的。为了提高独立模型的性能,作者提出了一种在印度背景下使法律文本正常化的方法。作者试验了两个与法律文本摘要的最先进的域独立模型,即Bart和Pegasus。 Bart和Pegasus以提取性和抽象的摘要为方面,以了解文本归一化方法的有效性。汇总文本由域专家在多个参数和使用胭脂指标上评估。它表明,在具有域独立模型的法律文本中,提出的文本归一化方法有效。
translated by 谷歌翻译