本文使用最佳运输理论介绍了贝叶法律的各种表示。差异表示是根据(状态,观察)及其独立耦合之间的最佳运输。通过将某些结构施加在传输图上,用于变异问题的解决方案用于构建一个将先前分布传输到观测信号的任何值的Brenier型图。新的公式用于用于离散时间过滤问题的集合卡尔曼滤波器(ENKF)的最佳传输形式,并使用输入凸神经网络提出了ENKF向非高斯设置的新型扩展。最后,所提出的方法用于在连续时限内得出反馈粒子填充物(FPF)的最佳运输形式,该形式构成了其第一个变化构建,而无需明确使用非线性滤波方程或贝叶斯定律。
translated by 谷歌翻译
在概率密度范围内相对于Wassersein度量的空间的梯度流程通常具有很好的特性,并且已在几种机器学习应用中使用。计算Wasserstein梯度流量的标准方法是有限差异,使网格上的基础空间离散,并且不可扩展。在这项工作中,我们提出了一种可扩展的近端梯度型算法,用于Wassersein梯度流。我们的方法的关键是目标函数的变分形式,这使得可以通过引流 - 双重优化实现JKO近端地图。可以通过替代地更新内部和外环中的参数来有效地解决该原始问题。我们的框架涵盖了包括热方程和多孔介质方程的所有经典Wasserstein梯度流。我们展示了若干数值示例的算法的性能和可扩展性。
translated by 谷歌翻译
Wasserstein BaryCenter是一种原理的方法来表示给定的一组概率分布的加权平均值,利用由最佳运输所引起的几何形状。在这项工作中,我们提出了一种新颖的可扩展算法,以近似于旨在在机器学习中的高维应用的Wassersein重构。我们所提出的算法基于Wassersein-2距离的Kantorovich双重制定以及最近的神经网络架构,输入凸神经网络,其已知参数化凸函数。我们方法的显着特征是:i)仅需要来自边缘分布的样本; ii)与现有方法不同,它代表了具有生成模型的重心,因此可以在不查询边际分布的情况下从重心产生无限样品; III)它与一个边际案例中的生成对抗性模型类似。我们通过在多个实验中将其与最先进的方法进行比较来证明我们的算法的功效。
translated by 谷歌翻译
3D重建问题中的一个关键问题是如何训练机器人或机器人以模型3D对象。在实时系统(例如自动驾驶汽车)中导航等许多任务直接取决于此问题。这些系统通常具有有限的计算能力。尽管近年来3D重建系统在3D重建系统中取得了长足的进展,但由于现有方法的高复杂性和计算需求,将它们应用于自动驾驶汽车中的导航系统等实时系统仍然具有挑战性。这项研究解决了以更快(实时)方式重建单视图像中显示的对象的当前问题。为此,开发了一个简单而强大的深度神经框架。提出的框架由两个组件组成:特征提取器模块和3D发电机模块。我们将点云表示为我们的重建模块的输出。将Shapenet数据集用于将方法与计算时间和准确性方面的现有结果进行比较。模拟证明了所提出的方法的出色性能。索引术语现实时间3D重建,单视图重建,监督学习,深神经网络
translated by 谷歌翻译
本文为基于MPC的基于MPC模型的增强学习方法的计划模块提出了一个新的评分功能,以解决使用奖励功能得分轨迹的固有偏见。所提出的方法使用折现价值和折扣价值提高了现有基于MPC的MBRL方法的学习效率。该方法利用最佳轨迹来指导策略学习,并根据现实世界更新其状态行动价值函数,并增强板载数据。在选定的Mujoco健身环境中评估了所提出方法的学习效率,以及在学习的模拟机器人模型中学习运动技能。结果表明,所提出的方法在学习效率和平均奖励回报方面优于当前的最新算法。
translated by 谷歌翻译
每种编程语言都有官方文档,以指导开发人员使用API,方法和类。但是,在某些情况下,官方文档不是获取所需信息的有效方法。结果,开发人员可以咨询其他来源(例如,堆栈溢出,GitHub),以了解有关API的更多信息,其实施,用法和其他官方文档可能无法提供的信息。在这项研究中,我们提出了一种自动方法,通过使用NLP技术利用非正式文档来生成API和方法的摘要。我们的发现表明,生成的摘要具有竞争力,可以用作指导开发人员在软件开发和维护任务方面的补充来源。
translated by 谷歌翻译
我们提出了一个具有物理信息的神经网络,作为生物样品层析成像重建的正向模型。我们证明,通过用Helmholtz方程训练该网络作为物理损失,我们可以准确预测散射场。可以证明,可以对不同的样本进行微调的验证网络,并用于与其他数值解决方案更快地解决散射问题。我们通过数值和实验结果评估我们的方法。我们的物理知识神经网络可以推广到任何前进和反向散射问题。
translated by 谷歌翻译
一组解决方案中的多元化已成为进化计算社区中的热门研究主题。事实证明,它有益于以多种方式优化问题,例如计算一套高质量的解决方案并获得不完美建模的鲁棒性。在文献中,我们首次适应了现实世界中的组合问题的进化多样性优化,即患者的入学计划。我们引入了一种进化算法,以在每种溶液质量的一组解决方案中实现结构多样性。我们还引入了一个突变操作员,偏向于多样性最大化。最后,我们通过模拟证明了多样性对上述问题的重要性。
translated by 谷歌翻译
卷积神经网络(CNN)已成为医疗图像分割任务的共识。但是,由于卷积操作的性质,它们在建模长期依赖性和空间相关性时受到限制。尽管最初开发了变压器来解决这个问题,但它们未能捕获低级功能。相比之下,证明本地和全球特征对于密集的预测至关重要,例如在具有挑战性的环境中细分。在本文中,我们提出了一种新型方法,该方法有效地桥接了CNN和用于医学图像分割的变压器。具体而言,我们使用开创性SWIN变压器模块和一个基于CNN的编码器设计两个多尺度特征表示。为了确保从上述两个表示获得的全局和局部特征的精细融合,我们建议在编码器编码器结构的跳过连接中提出一个双层融合(DLF)模块。在各种医学图像分割数据集上进行的广泛实验证明了Hiformer在计算复杂性以及定量和定性结果方面对其他基于CNN的,基于变压器和混合方法的有效性。我们的代码可在以下网址公开获取:https://github.com/amirhossein-kz/hiformer
translated by 谷歌翻译
本文介绍了稀疏的周期性收缩期(SPS)数据流,该数据流程推进了最先进的硬件加速器,用于支持轻型神经网络。具体而言,SPS DataFlow启用了一种新型的硬件设计方法,该方法通过新兴的修剪方案(定期基于模式的稀疏性(PPS))解锁。通过利用PPS的规律性,我们的Sparsity-Aware编译器可以最佳地重新定位权重,并在硬件中使用一个简单的索引单元来在权重和激活之间创建匹配。通过编译器硬件编码,SPS DataFlow具有更高的并行度,同时没有高索引开销,并且没有模型的准确性损失。在诸如VGG和Resnet之类的流行基准测试中进行了评估,SPS数据流以及随附的神经网络编译器编译器优于卷积神经网络(CNN)加速器设计的瞄准FPGA设备的设计。针对其他支撑重量存储格式,SPS导致4.49倍的能源效率提高,同时将存储需求降低3.67倍,用于总重量存储(非预紧权重加索引)和22,044X的索引存储器。
translated by 谷歌翻译