套件是指准备和分组必要的零件和工具(或“套件”)以在制造环境中组装。自动化此过程可简化人工工人的组装任务,并提高效率。现有的自动化套件系统遵守脚本指示和预定义的启发式方法。但是,鉴于零件和逻辑延迟的可用性差异,现有系统的僵化性可以限制装配线的整体效率。在本文中,我们提出了一个双重优化框架,以使机器人能够执行基于任务分割的零件选择,套件布置和交付计划,以及时提供定制的套件 - 即在需要时正确。我们通过人类主题研究(n = 18)评估了提出的方法,涉及基于研究的数据构建平板家具桌和购物流仿真。我们的结果表明,与使用由任务图本身定义的刚性任务分割边界定义的基线方法相比,与基线方法相比,与基线方法相比,即将到来的套件系统更有效,对上游商店流量延迟有弹性,并且比较更好地优选。单个套件,包括组装单个单元所需的所有零件。
translated by 谷歌翻译
本文介绍了一个混合在线的部分可观察到的马尔可夫决策过程(POMDP)计划系统,该系统在存在环境中其他代理商引入的多模式不确定性的情况下解决了自主导航的问题。作为一个特别的例子,我们考虑了密集的行人和障碍物中的自主航行问题。该问题的流行方法首先使用完整的计划者(例如,混合A*)生成一条路径,具有对不确定性的临时假设,然后使用基于在线树的POMDP求解器来解决问题的不确定性,并控制问题的有限方面(即沿着路径的速度)。我们提出了一种更有能力和响应的实时方法,使POMDP规划师能够控制更多的自由度(例如,速度和标题),以实现更灵活,更有效的解决方案。这种修改大大扩展了POMDP规划师必须推荐的国家空间区域,从而大大提高了在实时控制提供的有限计算预算中找到有效的推出政策的重要性。我们的关键见解是使用多Query运动计划技术(例如,概率路线图或快速行进方法)作为先验,以快速生成在有限的地平线搜索中POMDP规划树可能达到的每个状态的高效推出政策。我们提出的方法产生的轨迹比以前的方法更安全,更有效,即使在较长的计划范围内密集拥挤的动态环境中。
translated by 谷歌翻译
A new method for solving the wave equation is presented, called the learned Born series (LBS), which is derived from a convergent Born Series but its components are found through training. The LBS is shown to be significantly more accurate than the convergent Born series for the same number of iterations, in the presence of high contrast scatterers, while maintaining a comparable computational complexity. The LBS is able to generate a reasonable prediction of the global pressure field with a small number of iterations, and the errors decrease with the number of learned iterations.
translated by 谷歌翻译
As Artificial and Robotic Systems are increasingly deployed and relied upon for real-world applications, it is important that they exhibit the ability to continually learn and adapt in dynamically-changing environments, becoming Lifelong Learning Machines. Continual/lifelong learning (LL) involves minimizing catastrophic forgetting of old tasks while maximizing a model's capability to learn new tasks. This paper addresses the challenging lifelong reinforcement learning (L2RL) setting. Pushing the state-of-the-art forward in L2RL and making L2RL useful for practical applications requires more than developing individual L2RL algorithms; it requires making progress at the systems-level, especially research into the non-trivial problem of how to integrate multiple L2RL algorithms into a common framework. In this paper, we introduce the Lifelong Reinforcement Learning Components Framework (L2RLCF), which standardizes L2RL systems and assimilates different continual learning components (each addressing different aspects of the lifelong learning problem) into a unified system. As an instantiation of L2RLCF, we develop a standard API allowing easy integration of novel lifelong learning components. We describe a case study that demonstrates how multiple independently-developed LL components can be integrated into a single realized system. We also introduce an evaluation environment in order to measure the effect of combining various system components. Our evaluation environment employs different LL scenarios (sequences of tasks) consisting of Starcraft-2 minigames and allows for the fair, comprehensive, and quantitative comparison of different combinations of components within a challenging common evaluation environment.
translated by 谷歌翻译
Acquiring a better understanding of drought impacts becomes increasingly vital under a warming climate. Traditional drought indices describe mainly biophysical variables and not impacts on social, economic, and environmental systems. We utilized natural language processing and bidirectional encoder representation from Transformers (BERT) based transfer learning to fine-tune the model on the data from the news-based Drought Impact Report (DIR) and then apply it to recognize seven types of drought impacts based on the filtered Twitter data from the United States. Our model achieved a satisfying macro-F1 score of 0.89 on the DIR test set. The model was then applied to California tweets and validated with keyword-based labels. The macro-F1 score was 0.58. However, due to the limitation of keywords, we also spot-checked tweets with controversial labels. 83.5% of BERT labels were correct compared to the keyword labels. Overall, the fine-tuned BERT-based recognizer provided proper predictions and valuable information on drought impacts. The interpretation and analysis of the model were consistent with experiential domain expertise.
translated by 谷歌翻译
In many risk-aware and multi-objective reinforcement learning settings, the utility of the user is derived from a single execution of a policy. In these settings, making decisions based on the average future returns is not suitable. For example, in a medical setting a patient may only have one opportunity to treat their illness. Making decisions using just the expected future returns -- known in reinforcement learning as the value -- cannot account for the potential range of adverse or positive outcomes a decision may have. Therefore, we should use the distribution over expected future returns differently to represent the critical information that the agent requires at decision time by taking both the future and accrued returns into consideration. In this paper, we propose two novel Monte Carlo tree search algorithms. Firstly, we present a Monte Carlo tree search algorithm that can compute policies for nonlinear utility functions (NLU-MCTS) by optimising the utility of the different possible returns attainable from individual policy executions, resulting in good policies for both risk-aware and multi-objective settings. Secondly, we propose a distributional Monte Carlo tree search algorithm (DMCTS) which extends NLU-MCTS. DMCTS computes an approximate posterior distribution over the utility of the returns, and utilises Thompson sampling during planning to compute policies in risk-aware and multi-objective settings. Both algorithms outperform the state-of-the-art in multi-objective reinforcement learning for the expected utility of the returns.
translated by 谷歌翻译
Actively monitoring machine learning models during production operations helps ensure prediction quality and detection and remediation of unexpected or undesired conditions. Monitoring models already deployed in big data environments brings the additional challenges of adding monitoring in parallel to the existing modelling workflow and controlling resource requirements. In this paper, we describe (1) a framework for monitoring machine learning models; and, (2) its implementation for a big data supply chain application. We use our implementation to study drift in model features, predictions, and performance on three real data sets. We compare hypothesis test and information theoretic approaches to drift detection in features and predictions using the Kolmogorov-Smirnov distance and Bhattacharyya coefficient. Results showed that model performance was stable over the evaluation period. Features and predictions showed statistically significant drifts; however, these drifts were not linked to changes in model performance during the time of our study.
translated by 谷歌翻译
Although prediction models for delirium, a commonly occurring condition during general hospitalization or post-surgery, have not gained huge popularity, their algorithmic bias evaluation is crucial due to the existing association between social determinants of health and delirium risk. In this context, using MIMIC-III and another academic hospital dataset, we present some initial experimental evidence showing how sociodemographic features such as sex and race can impact the model performance across subgroups. With this work, our intent is to initiate a discussion about the intersectionality effects of old age, race and socioeconomic factors on the early-stage detection and prevention of delirium using ML.
translated by 谷歌翻译
Graph neural networks (GNNs) have received great attention due to their success in various graph-related learning tasks. Several GNN frameworks have then been developed for fast and easy implementation of GNN models. Despite their popularity, they are not well documented, and their implementations and system performance have not been well understood. In particular, unlike the traditional GNNs that are trained based on the entire graph in a full-batch manner, recent GNNs have been developed with different graph sampling techniques for mini-batch training of GNNs on large graphs. While they improve the scalability, their training times still depend on the implementations in the frameworks as sampling and its associated operations can introduce non-negligible overhead and computational cost. In addition, it is unknown how much the frameworks are 'eco-friendly' from a green computing perspective. In this paper, we provide an in-depth study of two mainstream GNN frameworks along with three state-of-the-art GNNs to analyze their performance in terms of runtime and power/energy consumption. We conduct extensive benchmark experiments at several different levels and present detailed analysis results and observations, which could be helpful for further improvement and optimization.
translated by 谷歌翻译
Proteins play a central role in biology from immune recognition to brain activity. While major advances in machine learning have improved our ability to predict protein structure from sequence, determining protein function from structure remains a major challenge. Here, we introduce Holographic Convolutional Neural Network (H-CNN) for proteins, which is a physically motivated machine learning approach to model amino acid preferences in protein structures. H-CNN reflects physical interactions in a protein structure and recapitulates the functional information stored in evolutionary data. H-CNN accurately predicts the impact of mutations on protein function, including stability and binding of protein complexes. Our interpretable computational model for protein structure-function maps could guide design of novel proteins with desired function.
translated by 谷歌翻译