计算光学成像(COI)系统利用其设置中的光学编码元素(CE)在单个或多个快照中编码高维场景,并使用计算算法对其进行解码。 COI系统的性能很大程度上取决于其主要组件的设计:CE模式和用于执行给定任务的计算方法。常规方法依赖于随机模式或分析设计来设置CE的分布。但是,深神经网络(DNNS)的可用数据和算法功能已在CE数据驱动的设计中开辟了新的地平线,该设计共同考虑了光学编码器和计算解码器。具体而言,通过通过完全可区分的图像形成模型对COI测量进行建模,该模型考虑了基于物理的光及其与CES的相互作用,可以在端到端优化定义CE和计算解码器的参数和计算解码器(e2e)方式。此外,通过在同一框架中仅优化CE,可以从纯光学器件中执行推理任务。这项工作调查了CE数据驱动设计的最新进展,并提供了有关如何参数化不同光学元素以将其包括在E2E框架中的指南。由于E2E框架可以通过更改损耗功能和DNN来处理不同的推理应用程序,因此我们提出低级任务,例如光谱成像重建或高级任务,例如使用基于任务的光学光学体系结构来增强隐私的姿势估计,以维护姿势估算。最后,我们说明了使用全镜DNN以光速执行的分类和3D对象识别应用程序。
translated by 谷歌翻译
Ever since the first microscope by Zacharias Janssen in the late 16th century, scientists have been inventing new types of microscopes for various tasks. Inventing a novel architecture demands years, if not decades, worth of scientific experience and creativity. In this work, we introduce Differentiable Microscopy ($\partial\mu$), a deep learning-based design paradigm, to aid scientists design new interpretable microscope architectures. Differentiable microscopy first models a common physics-based optical system however with trainable optical elements at key locations on the optical path. Using pre-acquired data, we then train the model end-to-end for a task of interest. The learnt design proposal can then be simplified by interpreting the learnt optical elements. As a first demonstration, based on the optical 4-$f$ system, we present an all-optical quantitative phase microscope (QPM) design that requires no computational post-reconstruction. A follow-up literature survey suggested that the learnt architecture is similar to the generalized phase contrast method developed two decades ago. Our extensive experiments on multiple datasets that include biological samples show that our learnt all-optical QPM designs consistently outperform existing methods. We experimentally verify the functionality of the optical 4-$f$ system based QPM design using a spatial light modulator. Furthermore, we also demonstrate that similar results can be achieved by an uninterpretable learning based method, namely diffractive deep neural networks (D2NN). The proposed differentiable microscopy framework supplements the creative process of designing new optical systems and would perhaps lead to unconventional but better optical designs.
translated by 谷歌翻译