Ever since the first microscope by Zacharias Janssen in the late 16th century, scientists have been inventing new types of microscopes for various tasks. Inventing a novel architecture demands years, if not decades, worth of scientific experience and creativity. In this work, we introduce Differentiable Microscopy ($\partial\mu$), a deep learning-based design paradigm, to aid scientists design new interpretable microscope architectures. Differentiable microscopy first models a common physics-based optical system however with trainable optical elements at key locations on the optical path. Using pre-acquired data, we then train the model end-to-end for a task of interest. The learnt design proposal can then be simplified by interpreting the learnt optical elements. As a first demonstration, based on the optical 4-$f$ system, we present an all-optical quantitative phase microscope (QPM) design that requires no computational post-reconstruction. A follow-up literature survey suggested that the learnt architecture is similar to the generalized phase contrast method developed two decades ago. Our extensive experiments on multiple datasets that include biological samples show that our learnt all-optical QPM designs consistently outperform existing methods. We experimentally verify the functionality of the optical 4-$f$ system based QPM design using a spatial light modulator. Furthermore, we also demonstrate that similar results can be achieved by an uninterpretable learning based method, namely diffractive deep neural networks (D2NN). The proposed differentiable microscopy framework supplements the creative process of designing new optical systems and would perhaps lead to unconventional but better optical designs.
translated by 谷歌翻译