该技术报告描述了在Robocup SPL(Mario)中计算视觉统计的模块化且可扩展的体系结构,该结构在Robocup 2022的SPL Open Research Challenge期间提出,该挑战在曼谷(泰国)举行。马里奥(Mario)是一个开源的,可用的软件应用程序,其最终目标是为Robocup SPL社区的发展做出贡献。Mario带有一个GUI,该GUI集成了多个机器学习和基于计算机视觉的功能,包括自动摄像机校准,背景减法,同型计算,玩家 +球跟踪和本地化,NAO机器人姿势估计和跌落检测。马里奥(Mario)被排名第一。1在开放研究挑战中。
translated by 谷歌翻译
Emerging applications such as Deep Learning are often data-driven, thus traditional approaches based on auto-tuners are not performance effective across the wide range of inputs used in practice. In the present paper, we start an investigation of predictive models based on machine learning techniques in order to optimize Convolution Neural Networks (CNNs). As a use-case, we focus on the ARM Compute Library which provides three different implementations of the convolution operator at different numeric precision. Starting from a collation of benchmarks, we build and validate models learned by Decision Tree and naive Bayesian classifier. Preliminary experiments on Midgard-based ARM Mali GPU show that our predictive model outperforms all the convolution operators manually selected by the library.
translated by 谷歌翻译
Pairwise Causal Discovery is the task of determining causal, anticausal, confounded or independence relationships from pairs of variables. Over the last few years, this challenging task has promoted not only the discovery of novel machine learning models aimed at solving the task, but also discussions on how learning the causal direction of variables may benefit machine learning overall. In this paper, we show that Quantitative Information Flow (QIF), a measure usually employed for measuring leakages of information from a system to an attacker, shows promising results as features for the task. In particular, experiments with real-world datasets indicate that QIF is statistically tied to the state of the art. Our initial results motivate further inquiries on how QIF relates to causality and what are its limitations.
translated by 谷歌翻译
整数序列对于承认完整描述的概念的建模至关重要。我们介绍了有关学习此类概念的新颖观点,并放下一组基准测试任务,旨在通过机器学习模型进行概念理解。这些任务间接评估模型的抽象能力,并挑战它们,以在观察代表性示例中获得的知识,从插值和外向上进行推理。为了进一步研究知识代表和推理的研究,我们介绍了事实,即“精选抽象理解工具包”。该工具包围绕着包含有机和合成条目的整数序列的大型数据集,用于数据预处理和生成的库,一组模型性能评估工具以及基线模型实现的集合,从而实现了未来的进步,以实现未来的进步舒适。
translated by 谷歌翻译
肺癌是癌症相关死亡率的主要原因。尽管新技术(例如图像分割)对于改善检测和较早诊断至关重要,但治疗该疾病仍然存在重大挑战。特别是,尽管治愈性分辨率增加,但许多术后患者仍会出现复发性病变。因此,非常需要预后工具,可以更准确地预测患者复发的风险。在本文中,我们探讨了卷积神经网络(CNN)在术前计算机断层扫描(CT)图像中存在的分割和复发风险预测。首先,随着医学图像分割的最新进展扩展,剩余的U-NET用于本地化和表征每个结节。然后,确定的肿瘤将传递给第二个CNN进行复发风险预测。该系统的最终结果是通过随机的森林分类器产生的,该分类器合成具有临床属性的第二个网络的预测。分割阶段使用LIDC-IDRI数据集,并获得70.3%的骰子得分。复发风险阶段使用了国家癌症研究所的NLST数据集,并获得了73.0%的AUC。我们提出的框架表明,首先,自动结节分割方法可以概括地为各种多任务系统提供管道,其次,深度学习和图像处理具有改善当前预后工具的潜力。据我们所知,这是第一个完全自动化的细分和复发风险预测系统。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
我们引入了一个新的差异隐私(DP)会计师,称为鞍点会计师(SPA)。SPA以准确而快速的方式近似保证DP机制的组成。我们的方法是受鞍点法的启发,这是一种统计中无处不在的数值技术。通过为SPA提供的近似误差,我们通过得出上限和下限来证明性能的严格保证。水疗中心的关键是与中心极限定理的大型探空方法的组合,我们通过指数倾斜与DP机制相对应的隐私损失随机变量来得出。水疗中心的一个关键优点是,它可以在$ n $折叠机制的$ n $折叠组成下持续运行。数值实验表明,水疗中心的准确性与更快的运行时的最新会计方法相当。
translated by 谷歌翻译
我们提出了四足球运动的多功能非线性模型预测控制(NMPC)公式。我们的公式根据简化的动力学模型共同优化了基本轨迹和一组立足点。我们利用二阶灵敏度分析和稀疏的高斯 - 纽顿(SGN)方法来解决所得的最佳控制问题。我们进一步描述了通过模拟和硬件实验验证我们的方法的持续努力。最后,我们将运动框架扩展到处理构成差距交叉,踏入石头的运动和多机器人控制的具有挑战性的任务。
translated by 谷歌翻译
在过去的十年中,通过深度学习方法取得了杰出的结果,对单一语言的语音情感识别(SER)取得了显着的结果。但是,由于(i)源和目标域分布之间的巨大差异,(ii)少数标记和许多未标记的新语言的话语,跨语言SER仍然是现实世界中的挑战。考虑到以前的方面,我们提出了一种半监督学习方法(SSL)方法,用于跨语性情感识别时,当有一些新语言的标签可用时。基于卷积神经网络(CNN),我们的方法通过利用伪标记的策略来适应新语言。特别是,研究了使用硬和软伪标签方法的使用。我们在源和新语言上均独立于语言的设置中彻底评估了该方法的性能,并在属于不同语言菌株的五种语言中显示出其稳健性。
translated by 谷歌翻译
瓶颈问题是一系列重要的优化问题,最近在机器学习和信息理论领域引起了人们的关注。它们被广泛用于生成模型,公平的机器学习算法,对隐私保护机制的设计,并在各种多用户通信问题中作为信息理论性能界限出现。在这项工作中,我们提出了一个普通的优化问题家族,称为复杂性 - 裸露的瓶颈(俱乐部)模型,该模型(i)提供了一个统一的理论框架,该框架将大多数最先进的文献推广到信息理论隐私模型(ii)建立了对流行的生成和判别模型的新解释,(iii)构建了生成压缩模型的新见解,并且(iv)可以在公平的生成模型中使用。我们首先将俱乐部模型作为复杂性约束的隐私性优化问题。然后,我们将其与密切相关的瓶颈问题(即信息瓶颈(IB),隐私渠道(PF),确定性IB(DIB),条件熵瓶颈(CEB)和有条件的PF(CPF)连接。我们表明,俱乐部模型概括了所有这些问题以及大多数其他信息理论隐私模型。然后,我们通过使用神经网络来参数化相关信息数量的变异近似来构建深层俱乐部(DVCLUB)模型。在这些信息数量的基础上,我们提出了监督和无监督的DVClub模型的统一目标。然后,我们在无监督的设置中利用DVClub模型,然后将其与最先进的生成模型(例如变异自动编码器(VAE),生成对抗网络(GAN)以及Wasserstein Gan(WGAN)连接起来,Wasserstein自动编码器(WAE)和对抗性自动编码器(AAE)通过最佳运输(OT)问题模型。然后,我们证明DVCLUB模型也可以用于公平表示学习问题,其目标是在机器学习模型的训练阶段减轻不希望的偏差。我们对彩色命名和Celeba数据集进行了广泛的定量实验,并提供了公共实施,以评估和分析俱乐部模型。
translated by 谷歌翻译